

Annual Groundwater Monitoring and Corrective Action Report

MERRIMACK STATION COAL ASH LANDFILL

Bow, New Hampshire

Prepared for GSP Merrimack LLC
File No. 2025.017
January 27, 2026

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GROUNDWATER MONITORING AND CORRECTIVE ACTIONS OVERVIEW	1
3.0	REPORT REQUIREMENTS.....	1
4.0	BACKGROUND	2
5.0	SUMMARY OF GROUNDWATER MONITORING	2
6.0	SUMMARY OF STATISTICAL ANALYSIS.....	3

TABLES

Table 1	Groundwater Analytical Results Summary
Table 2	Groundwater Level Measurements Summary

FIGURES

Figure 1	Locus Plan
Figure 2	Facility Plan

APPENDICES

Appendix A	Limitations
Appendix B	Alternative Source Demonstration
Appendix C	Laboratory Reports

1.0 INTRODUCTION

Groundwater monitoring at the Merrimack Station Coal Ash Landfill site (Site) in Bow, New Hampshire is required pursuant to the United States Environmental Protection Agency (USEPA) Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments 40 CFR Part 257.90. Sanborn, Head & Associates, Inc. (Sanborn Head) prepared this 2026 Annual Groundwater Monitoring and Corrective Action Report (Annual Report) for the Site as required by 40 CFR Part 257.90(e) to cover the reporting period from January 1, 2025, through December 31, 2025. This report and the services provided by Sanborn Head are subject to the Limitations provided in Appendix A.

2.0 GROUNDWATER MONITORING AND CORRECTIVE ACTIONS OVERVIEW

As required under 40 CFR Part 257.90(e)(6), the following summarizes the groundwater monitoring and corrective action programs for the 2025 annual reporting period.

- i. The Site was operating under the detection monitoring program at the start of the annual reporting period.
- ii. The Site continued to operate under the detection monitoring program at the end of the annual reporting period, i.e., there was no need to implement assessment monitoring.
- iii. A statistically significant increase (SSI) over background was detected at the Site. Pursuant to 40 CFR Part 257.94(e)(2), demonstration that the SSI was due to natural variation in groundwater quality has been completed and the Site continues to operate under the detection monitoring program. An Alternative Source Demonstration (ASD), provided in Appendix B, was prepared for sulfate at SB-1 detected in November 2024. Additional information regarding the statistical analyses and ASD are provided in Section 6.
- iv. There were no statistically significant exceedances of groundwater protection standards.
- v. There were no remedy selections required pursuant to 40 CFR Part 257.97.
- vi. There were no initiated or ongoing remedial activities required pursuant to 40 CFR Part 257.98.

3.0 REPORT REQUIREMENTS

As required under 40 CFR Part 257.90(e), this Annual Report includes the following information:

1. A map and diagram showing the Site and the background (or upgradient) and downgradient monitoring wells that are part of the groundwater monitoring program for the Site;
2. Identification of monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;
3. Monitoring data obtained under 40 CFR Parts 257.90 through 257.98, including:
 - a. The number of groundwater samples that were collected for analysis for each background and downgradient well;
 - b. The dates the samples were collected; and
 - c. Whether the sample was required by the detection monitoring or assessment monitoring programs;
4. A narrative discussion of transitions, if any, between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels);

5. Other information required to be included in the annual report as specified in 40 CFR Parts 257.90 through 257.98, including:
 - a. Groundwater elevations measured in each well immediately prior to purging and the rate and direction of groundwater flow, as calculated by the owner or operator of the Site, each time groundwater is sampled (40 CFR Part 257.93(c)); and
 - b. Written demonstrations prepared by a qualified professional engineer demonstrating that a source other than the Site caused an observed SSI over background levels for a constituent or that the SSI resulted from an error in sampling, analysis, statistical evaluation, or natural variation in groundwater quality (40 CFR Part 257.94(e)(2));
6. As provided in the groundwater monitoring and corrective actions overview above (see Section 2.0), a section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the Site.

4.0 BACKGROUND

The Site has been operating since 1978 and was constructed in a former sand and gravel quarry on the property adjacent to the Merrimack Station electric power generation facility in Bow, New Hampshire. The landfill was constructed with a Hypalon geomembrane liner system and a leachate collection system, and it receives coal ash from the nearby Merrimack Station electric power generation facility. A portion of the landfill was filled to final grade and was capped with a final cover system. A Locus Plan for the Site is provided as Figure 1, and the locations of the monitoring wells in relation to the landfill are indicated on the Facility Plan, Figure 2.

In addition to the monitoring required by 40 CFR Part 257.90 through 257.98, the groundwater quality at the Site has been routinely monitored under New Hampshire Department of Environmental Services (NHDES) regulations since the 1980s. The current groundwater monitoring program, as prescribed by the NHDES Groundwater Release Detection Permit No. GWP-198400065-B-007, issued May 2, 2022, requires measuring of static groundwater levels and laboratory analyses of groundwater samples from five (5) overburden monitoring wells (i.e., SB-1, SB-4, SB-6, SB-13, and SB-14) on a semi-annual basis.

As discussed in the Groundwater Monitoring Well Network Verification,¹ the five monitoring wells were certified as an appropriate groundwater monitoring system and were constructed to meet the requirements of 40 CFR Part 257.91. No monitoring wells were installed or decommissioned at the Site during the reporting period.

5.0 SUMMARY OF GROUNDWATER MONITORING

As specified in 40 CFR Part 257.94(b), a detection monitoring program was initiated in October 2015. A Sampling and Analysis Plan² was prepared to address the requirements of 40 CFR part 257.93. Monitoring well SB-13 is the upgradient/background monitoring well for the Site. The other monitoring wells are considered downgradient or sidegradient to the landfill, although groundwater flow conditions at the Site vary over time. For the groundwater monitoring program, unfiltered groundwater samples were collected and analyzed by Eurofins

¹ *Groundwater Monitoring Well Network Verification* prepared by Sanborn Head, dated January 14, 2016.

² *Sampling and Analysis Plan* prepared by Sanborn Head, dated October 7, 2016.

Environment Testing Northeast, LLC, (Eurofins) of Concord, New Hampshire using low-flow sampling techniques, based on the USEPA Low Stress (Low Flow) Standard Operating Procedure, revised September 20, 2017.

As part of the detection monitoring program, eight independent samples for each background and downgradient well were collected and analyzed for the constituents listed in 40 CFR Part 257 Appendix III (boron, calcium, chloride, fluoride, pH, sulfate, and TDS) and Appendix IV (antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 and 228, combined). The initial eight, independent samples were collected in February 2016 through April 2017 for the five Site monitoring wells. The statistical analysis of the groundwater monitoring data after the eight initial samples indicated that a transition between monitoring programs (i.e., to assessment monitoring) was not required.

Semi-annual detection monitoring, as specified in 40 CFR Part 257.94, was initiated in November 2017. Detection monitoring at the Site includes sampling the five wells for analysis of the Appendix III constituents. For the current reporting period, semi-annual detection monitoring samples were collected in April 2025 and November 2025. As described below, the data analyses completed during the reporting period indicated that a transition between monitoring programs (i.e., to assessment monitoring) was not required.

Groundwater analytical data are summarized in Table 1, and laboratory reports are provided in Appendix C. The groundwater level measurements and inferred general groundwater flow directions are summarized in Table 2.

6.0 SUMMARY OF STATISTICAL ANALYSIS

As required under 40 CFR Part 257.90(b)(iv), Sanborn Head evaluated groundwater monitoring data for SSIs over background levels for the constituents listed in 40 CFR Part 257 Appendix III at the five Site monitoring wells. The statistical analyses completed in 2025 for the Fall 2024 and Spring 2025 data were consistent with the methods described in the Site's Statistical Analysis Plan, prepared by Sanborn Head and dated January 2024. Statistical analysis of the Fall 2025 data is ongoing.

The prediction interval procedure specified in 40 CFR Part 257.93(f)(3) was selected for evaluation of the most recent parameter values for the Site wells (i.e., SB-1, SB-4, SB-6, SB-13, and SB-14). The prediction interval procedure was performed on parameters specified in Appendix III (i.e., boron, calcium, chloride, fluoride, pH, Sulfate, and TDS) using the multiple well and multiple parameter prediction limit equation.

Based on the prediction interval procedures performed for data collected for the Fall 2024 monitoring round, an SSI over background levels was identified. Pursuant to 40 CFR Part 257.94(e)(2), within 90 days of detecting the SSI, Sanborn Head prepared an ASD that demonstrated, based on a weight-of-evidence approach, that the SSI was due to natural

variation in groundwater quality. The SSI and corresponding ASD are summarized in Exhibit 1, below. The ASD for the Fall 2024 SSI is provided as Appendix B.

Exhibit 1: Alternative Source Demonstration

Sampling Round	Sampling Date	SSI Location and Parameter	ASD Date
Fall 2024	November 22, 2024	SB-1: Sulfate	May 6, 2025

\\conserv1\\shdata\\2000s\\2025.017\\Source Files\\202601 CCR Rpt\\202601 CCR Rpt.docx

Tables

TABLE 1
Groundwater Analytical Results Summary
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Location	Date	Metals													Miscellaneous Parameters								
		μg/L													s.u	pCi/L							
Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	pH	Radium 226	Radium 228	Radium 226+228	
Drinking Water MCL	6	5	2,000	4	NS	5	NS	100	NS	15*	NS	2	NS	50	2	NS	4,000	NS	NS	NS	NS	5	
CCR Alt. Standards	NA	NA	NA	NA	NA	NA	NA	NA	6	15	40	NA	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	
GW-1/(AGQS)	6 ‡	5 ‡	2,000 ‡	4 ‡	6,000 ‡	5 ‡	NS ‡	100	NS ‡	15 ‡	NS	2 ‡	NS	50 ‡	2 ‡	NS	4,000	500,000	NS	NS	NS	NS	
GW-2	NA	NA	NA	NA	NA	NA	NS	NA	NS	NA	NS	NA	NA	NA	NA	NS	†	†	NS	NS	NS	NS	
2/24/2016	<1.0	<1.0	14	<1.0	60	<1.0	<1.0	<1.0	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0	<1.0	44,000	<100	8,000	96,000	5.21	0.2 ± 0.1	0.6 ± 0.6	0.8 ± 0.6
4/25/2016	<1.0	<1.0	18	<1.0	100	<1.0	10,000	<1.0	<1.0	<1.0	<0.10	1.0	<1.0	<1.0	<1.0	58,000	<100	9,000	120,000	5.72	0.5 ± 0.2	0.2 ± 0.4	0.7 ± 0.4
6/6/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,200	<1.0	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0	<1.0	55,000	<100	7,000	140,000	5.52	0.6 ± 0.3	0.2 ± 0.5	0.8 ± 0.5
7/18/2016	<1.0	<1.0	16	<1.0	70	<1.0	8,600	<1.0	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0	<1.0	60,000	<100	9,000	120,000	5.35	0.4 ± 0.3	0.0 ± 0.6	0.4 ± 0.6
8/30/2016	<1.0	<1.0	17	<1.0	<50	<1.0	7,900	<1.0	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0	<1.0	49,000	<100	7,000	130,000	5.23	0.4 ± 0.3	0.3 ± 0.4	0.7 ± 0.4
10/17/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,700	<1.0	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0	<1.0	60,000	<100	6,000	130,000	5.63	0.6 ± 0.4	0.0 ± 0.4	0.6 ± 0.4
11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,000	<1.0	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0	<1.0	62,000	<100	6,000	88,000	5.63	1.0 ± 0.4	0.8 ± 0.5	1.8 ± 0.5
4/19/2017	<1.0	<1.0	16	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0	<1.0	56,000	<100	8,000	120,000	5.81	0.4 ± 0.3	0.2 ± 0.5	0.6 ± 0.5
11/17/2017					50		12,000									68,000	<100	8,000	120,000	5.70			
1/31/2018	c						12,000																
4/9/2018					67		12,000									55,000	<100	10,000	160,000	5.90			
7/25/2018	c						12,000									63,000		13,000	140,000	5.94			
11/29/2018					87		13,000									66,000	<100	10,000	100,000	6.07			
4/26/2019					100		13,000									55,000	<100	12,000	140,000	5.78			
11/15/2019					59		11,000									68,000	<100	10,000	140,000	5.56			
4/23/2020					70		14,000									53,000	<100	11,000	150,000	5.94			
11/12/2020					<50		10,000									64,000	<100	13,000	150,000	5.36			
2/4/2021	c						11,000									78,000		11,000	150,000	5.12			
4/28/2021					78		14,000									62,000	<100	11,000	180,000	5.42			
9/14/2021	c				58		13,000									69,000	<100	11,000	210,000	6.21			
11/15/2021					<50		14,000									93,000	<100	9,600	220,000	4.99			
4/11/2022					81		16,000									92,000	<100	12,000	240,000	5.75			
11/14/2022					79		13,000									70,000	<100	15,000	190,000	5.36			
2/13/2023	c				12,000											79,000		16,000	180,000	5.42			
4/27/2023					130		18,000									79,000	<100	17,000	180,000	5.53			
8/17/2023	c				83		19,000									92,000		16,000	250,000	5.70			
11/16/2023					92		17,000									100,000	<100	17,000	260,000	5.32			
3/7/2024	c				110		20,000									86,000		21,000	230,000	5.58			
4/19/2024					73		16,000									110,000	<100	18,000	230,000	5.55			
9/20/2024	c				120		12,000									73,000		25,000	190,000	5.40			
11/22/2024					96		10,000									61,000	<100	28,000	160,000	5.54			
4/25/2025					82		13,000									83,000	<100	23,000	170,000	5.90			
11/14/2025					<50		12,000									98,000	<100	17,000	220,000	5.50			
2/23/2016	<1.0	<1.0	14	<1.0	<50	<1.0	8,400	<1.0	<1.0	<1.0	<1,000	<0.10	<1.0	<1.0	<1.0	95,000	<100	9,000	210,000	5.49	0.3 ± 0.1	1.0 ± 0.6	1.3 ± 0.6
4/25/2016	<1.0	<1.0	14	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	110,000	<100	8,000	200,000	5.32	0.3 ± 0.3	0.0 ± 0.4	0.3 ± 0.4
6/6/2016	<1.0	<1.0	12	<1.0	<50	<1.0	8,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	110,000	<100	10,000	230,000	5.62	0.2 ± 0.2	0.4 ± 0.5	0.6 ± 0.5
7/18/2016	<1.0	<1.0	11	<1.0	<50	<1.0	7,800	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	11,000	220,000	5.27	0.4 ± 0.3	0.4 ± 0.6	0.8 ± 0.6
8/30/2016	<1.0	<1.0	10	<1.0	<50	<1.0	6,800	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	88,000	<100	12,000	210,000	5.72	0.2 ± 0.2	0.0 ± 0.4	0.2 ± 0.4
10/17/2016	<1.0	<1.0	12	<1.0	<50	<1.0	8,400	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	10,000	190,000	5.71	0.3 ± 0.3	0.0 ± 0.5	0.3 ± 0.5
11/29/2016	<1.0	1.0	12	<1.0	<50	<1.0	7,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	10,000	180,000	5.79	0.7 ± 0.3	0.5 ± 0.5	1.2 ± 0.5
4/19/2017	<1.0	<1.0	19	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	120,000	<100	9,000	260,000	5.71	0.3 ± 0.3	0.0 ± 0.5	0.3 ± 0.5
11/17/2017					<50		10,000									77,000	<100	13,000	170,000	5.80			
4/9/2018					<50		11,000									93,000	<100	12,000	220,000	5.87			
7/25/2018	c						9,800									95,000		11,000	210,000	5.68			
11/28/2018					<50		12,000									86,000	<100	13,000	130,000	6.28			
4/26/2019					<50		13,000									94,000	<100	11,000	190,000	5.83			
11/15/2019					53		11,000									97,000	<100	11,000	230,000	5.75			
2/14/2020	c				<50		11,000									100,000		14,000	190,000	5.85			
4/23/2020					55		13,000									140,000	<100	11,000	260,000	5.72			
7/8/2020	c				57		11,000									99,000		14,000	240,000	5.59			
11/12/2020					60		9,600									120,000	<100	18,000	260,000	5.18			
2/4/2021	c				70		8,500									100,000		20,000	240,000	5.22			
4/28/2021					65		11,000					</td											

TABLE 1
Groundwater Analytical Results Summary
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Location	Date	Metals													Miscellaneous Parameters									
		Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	s.u	pCi/L		
		μg/L																						
Drinking Water MCL	6	5	2,000	4	NS	5	NS	100	NS	15*	NS	2	NS	50	2	NS	4,000	NS	NS	NS	NS	5		
CCR Alt. Standards	NA	NA	NA	NA	NA	NA	NA	NA	6	15	40	NA	100	NA	NA	NA	NA	NA	NA	NA	NA	NA		
GW-1/(AGQS)	6 ‡	5 ‡	2,000 ‡	4 ‡	6,000 ‡	5 ‡	NS ‡	100	NS ‡	15 ‡	NS	2 ‡	NS	50 ‡	2 ‡	NS	4,000	500,000	NS	NS	NS	NS		
GW-2	NA	NA	NA	NA	NA	NA	NS	NA	NS	NA	NS	NA	NS	NA	NA	NA	†	†	NS	NS	NS	NS		
2/23/2016	<1.0	<1.0	9.0	<1.0	<50	<1.0	5,300	<1.0	<1.0	<1.0	<1,000	<0.10	<1.0	<1.0	<1.0	<1.0	80,000	<100	10,000	170,000	5.55	0.1 ±0.07	0.5 ±0.5	0.6 ±0.5
4/25/2016	<1.0	<1.0	16	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	140,000	<100	7,000	220,000	5.55	0.4 ±0.3	0.0 ±0.4	0.4 ±0.4
6/6/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	140,000	<100	8,000	270,000	5.40	0.5 ±0.3	0.0 ±0.5	0.5 ±0.5
7/18/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,200	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	140,000	<100	9,000	260,000	5.27	0.5 ±0.3	0.3 ±0.6	0.8 ±0.6
8/30/2016	<1.0	<1.0	18	<1.0	<50	<1.0	9,100	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	140,000	<100	9,000	280,000	5.71	0.4 ±0.2	0.0 ±0.4	0.4 ±0.4
10/17/2016	<1.0	<1.0	18	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	150,000	<100	8,000	260,000	5.78	0.2 ±0.3	0.0 ±0.5	0.2 ±0.5
11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,100	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	130,000	<100	9,000	230,000	5.77	0.5 ±0.2	0.8 ±0.5	1.3 ±0.5
4/19/2017	<1.0	<1.0	13	<1.1	<51	<1.1	7,400	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	100,000	<100	9,000	190,000	5.68	0.4 ±0.3	0.2 ±0.5	0.6 ±0.5
11/17/2017				<50			9,900										130,000	<100	11,000	230,000	5.60			
4/9/2018				<50			7,900										120,000	<100	9,500	240,000	5.57			
7/25/2018	c						11,000										180,000		12,000	310,000	5.44			
11/28/2018				<50			11,000										150,000	<100	11,000	140,000	5.86			
4/26/2019				84			13,000										150,000	<100	14,000	210,000	5.78			
7/11/2019	c			80			14,000										170,000		15,000	330,000	5.84			
11/15/2019				52			10,000										140,000	<100	13,000	280,000	5.75			
2/14/2020	c						5,100										79,000		15,000	130,000	5.73			
4/23/2020				<50			12,000										160,000	<100	8,100	270,000	5.56			
11/12/2020				<50			12,000										180,000	<100	9,600	330,000	5.37			
4/28/2021				<50			11,000										150,000	<100	6,700	290,000	5.58			
11/15/2021				<50			12,000										200,000	<100	8,800	370,000	5.27			
4/11/2022				<50			10,000										170,000	<100	9,400	330,000	5.80			
11/14/2022				<50			6,800										110,000	<100	11,000	240,000	5.53			
4/27/2023				<50			12,000										140,000	<100	7,900	250,000	5.03			
11/16/2023				<50			6,300										110,000	<100	11,000	220,000	5.65			
4/19/2024				<50			8,300										110,000	<100	7,900	240,000	5.44			
11/22/2024				<50			4,300										66,000	<100	12,000	130,000	5.73			
4/25/2025				63			6,300										51,000	<100	16,000	140,000	5.76			
11/14/2025				<50			14,000										170,000	<100	9,600	340,000	5.94			
SB-6	2/23/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,900	<1.0	<1.0	<1.0	<1,000	<0.10	<1.0	<1.0	<1.0	160,000	<100	6,000	270,000	5.34	0.6 ±0.1	0.3 ±0.6	0.9 ±0.6
4/25/2016	<1.0	<1.0	17	<1.0	<50	<1.0	8,800	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	160,000	<100	7,000	290,000	5.48	0.4 ±0.3	0.1 ±0.4	0.5 ±0.4
6/6/2016	<1.0	<1.0	20	<1.0	<50	<1.0	9,900	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	170,000	<100	7,000	320,000	5.50	0.8 ±0.3	0.0 ±0.5	0.8 ±0.5
7/18/2016	<1.0	<1.0	18	<1.0	<50	<1.0	9,700	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	160,000	<100	8,000	330,000	5.27	0.8 ±0.3	0.0 ±0.6	0.8 ±0.6
8/30/2016	<1.0	1.0	20	<1.0	<50	<1.0	8,100	2.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	150,000	<100	8,000	270,000	5.35	0.8 ±0.3	0.6 ±0.4	1.4 ±0.4
10/17/2016	<1.0	<1.0	15	<1.0	<50	<1.0	8,800	2.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	150,000	<100	8,000	260,000	5.06	0.7 ±0.4	0.6 ±0.5	1.3 ±0.5
11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	7,400	1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	140,000	<100	8,000	240,000	5.71	0.6 ±0.3	0.7 ±0.5	1.3 ±0.5
4/19/2017	<1.0	<1.0	16	<1.1	<51	<1.1	8,000	<10	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	<1.0	130,000	<100	8,000	270,000	5.56	0.9 ±0.3	0.3 ±0.5	1.2 ±0.5
11/17/2017				<50			7,000										110,000	<100	9,000	220,000	5.80			
4/9/2018				<50			11,000										170,000	<100	8,000	330,000	5.81			
7/25/2018	c						10,000										190,000		8,700	340,000	5.69			
11/28/2018				<50			13,000										200,000	<100	7,200	260,000	5.77			
4/26/2019				<50			14,000										200,000	<100	7,100	290,000	5.53			
11/15/2019				<50			8,100										140,000	<100	8,100	280,000	5.82			
4/23/2020				<50			14,000										230,000	<100	6,500	400,000	5.47			
7/8/2020	c			<50			14,000										210,000		6,900	370,000	5.41			
11/12/2020				<50			11,000										180,000	<100	8,000	330,000	4.96			
2/4/2021	c			<50			11,000										180,000		6,700	320,000	5.32			
4/28/2021				<50			14,000										240,000	<100	5,900	410,000	5.31			
11/15/2021				<50			11,000										200,000	<100	7,900	370,000	5.02			
4/11/2022				<50			9,800										190,000	<100	9,700	360,000	5.47			
11/14/2022				<50			7,700										150,000	<100	8,200	310,000	5.55			
4/27/2023				<50			1																	

TABLE 1
Groundwater Analytical Results Summary
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Location	Date	Metals													Miscellaneous Parameters								
		Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	s.u	pCi/L	
μg/L															pH	Radium 226	Radium 228	Radium 226+228					
Drinking Water MCL	6	5	2,000	4	NS	5	NS	100	NS	15*	NS	2	NS	50	2	NS	4,000	NS	NS	NS	NS	5	
CCR Alt. Standards	NA	NA	NA	NA	NA	NA	NA	NA	6	15	40	NA	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	
GW-1/(AGQS)	6 ‡	5 ‡	2,000 ‡	4 ‡	6,000 ‡	5 ‡	NS ‡	100	NS ‡	15 ‡	NS	2 ‡	NS	50 ‡	2 ‡	NS	4,000	500,000	NS	NS	NS	NS	
GW-2	NA	NA	NA	NA	NA	NA	NS	NA	NS	NA	NS	NA	NA	NA	NA	NA	†	†	NS	NS	NS	NS	
SB-14	2/24/2016	<1.0	<1.0	3.0	<1.0	<50	<1.0	6,100	<1.0	<1.0	<1,000	<0.10	<1.0	<1.0	<1.0	16,000	<100	4,000	56,000	5.05	0.2 ±0.08	0.0 ±0.5	0.2 ±0.5
	4/25/2016	<1.0	<1.0	9.0	<1.0	<50	<1.0	11,000	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	58,000	<100	3,000	140,000	5.62	0.8 ±0.5	0.2 ±0.1	1.0 ±0.5
	6/6/2016	<1.0	<1.0	6.0	<1.0	<50	<1.0	7,600	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	32,000	<100	4,000	100,000	5.39	0.5 ±0.2	0.2 ±0.5	0.7 ±0.5
	7/18/2016	<1.0	<1.0	3.0	<1.0	<50	<1.0	6,300	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	21,000	<100	5,000	68,000	5.31	0.2 ±0.2	0.3 ±0.5	0.5 ±0.5
	8/30/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	5,300	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	14,000	<100	4,000	71,000	5.81	0.4 ±0.3	0.4 ±0.5	0.8 ±0.5
	10/17/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	4,000	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	11,000	<100	4,000	29,000	5.55	0.2 ±0.3	0.0 ±0.5	0.2 ±0.5
	11/29/2016	<1.0	<1.0	2.0	<1.0	<50	<1.0	2,900	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	7,000	<100	4,000	12,000	5.19	0.2 ±0.4	0.2 ±0.5	0.4 ±0.5
	4/19/2017	<1.0	<1.0	10	<1.0	<50	<1.0	10,000	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	56,000	<100	5,000	120,000	5.59	0.7 ±0.3	0.1 ±0.5	0.8 ±0.5
	11/17/2017				<50			8,000								18,000	<100	5,000	59,000	5.60			
	4/9/2018				<50			4,200								14,000	<100	8,400	80,000	5.76			
	7/25/2018 c							5,100								9,800		6,100	56,000	5.61			
	11/28/2018					<50		4,500								7,800	<100	6,300	<5,000	5.96			
	4/26/2019					<50		8,700								19,000	<100	3,700	91,000	5.74			
	11/15/2019				<50			5,000								12,000	<100	7,800	69,000	5.94			
	4/23/2020				<50			5,500								9,200	<100	5,500	52,000	5.63			
	11/12/2020				<50			4,000								4,700	<100	15,000	68,000	5.10			
	2/4/2021 c							7,900								34,000		6,000	95,000	5.30			
	4/28/2021				<50			3,300								4,000	<100	7,100	42,000	5.37			
	11/15/2021				<50			3,400								9,300	<100	16,000	64,000	5.55			
	4/11/2022				<50			4,400								12,000	<100	9,600	44,000	5.76			
	11/14/2022				<50			5,600								10,000	<100	18,000	72,000	5.74			
	2/13/2023 c							6,300								22,000		11,000	53,000	5.62			
	4/27/2023				<50			5,500								6,500	<100	7,400	59,000	5.12			
	11/16/2023				<50			4,900								18,000	<100	22,000	91,000	5.65			
	4/19/2024				<50			3,900								9,800	<100	14,000	49,000	5.36			
	11/22/2024				<50			2,800								6,200	<100	19,000	64,000	6.03			
	4/25/2025				<50			4,600								8,400	<100	10,000	33,000	6.11			
	11/14/2025				<50			3,500								8,500	110	17,000	49,000	5.97			

Notes:

1. Samples were collected by Eurofins Environment Testing Northeast, LLC, (Eurofins, formerly Eastern Analytical, Inc.) of Concord, New Hampshire on the dates indicated and analyzed by Eurofins for select metals by USEPA Method 6020. Additional analysis for select wet chemistry parameters were completed by Eurofins. Analysis for radium 226 and 228 was completed by KNL Environmental Testing, Inc., of Tampa, Florida. Analysis for lithium was completed by SGS Accutest, of Marlborough, Massachusetts (Feb. 2016) and Katahdin Analytical Services, of Scarborough, Maine (April 2016 through October 2016).

2. Concentrations are presented in micrograms per liter (μg/L), which are equivalent to parts per billion (ppb), or they are presented in picoCuries per liter (pCi/L) or pH standard units.

3. "<" indicates the analyte was not detected above the indicated laboratory reporting limit.

A blank indicates the sample was not analyzed for this parameter.

4. "GW-1" and "GW-2" Groundwater Standards are from the New Hampshire Department of Environmental Services (NHDES) Contaminated Sites Risk Characterization and Management Policy (RCMP) (January 1998, with 2000 through 2018 revisions/addenda). GW-1 Groundwater Standards are equivalent to the Ambient Groundwater Quality Standards (AGQS) promulgated in Env-Or 600 (June 2015 with October 2016, September 2018, September 2019, May 2020, January 2021, and July 2021 amendments). The AGQS/GW-1 Groundwater Standards are intended to be protective of groundwater as a source of drinking water. The GW-2 Groundwater Standards apply to groundwater as a potential source of indoor air contamination.

5. "Drinking Water MCLs" are from the United States Environmental Protection Agency (EPA) website (accessed March 22, 2016). The Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are enforceable standards for drinking water systems.

"CCR Alt. Standards" were codified in 40 CFR Part 257.95(h)(2) for cobalt, lead, lithium, and molybdenum. These are alternative risk-based standards for the four constituents without MCLs that may require establishment of a groundwater protection standard under the coal combustion residuals (CCR) rules 40 CFR Part 257(h).

6. "*" indicates an MCL value is not currently available, and the listed value is an action level.

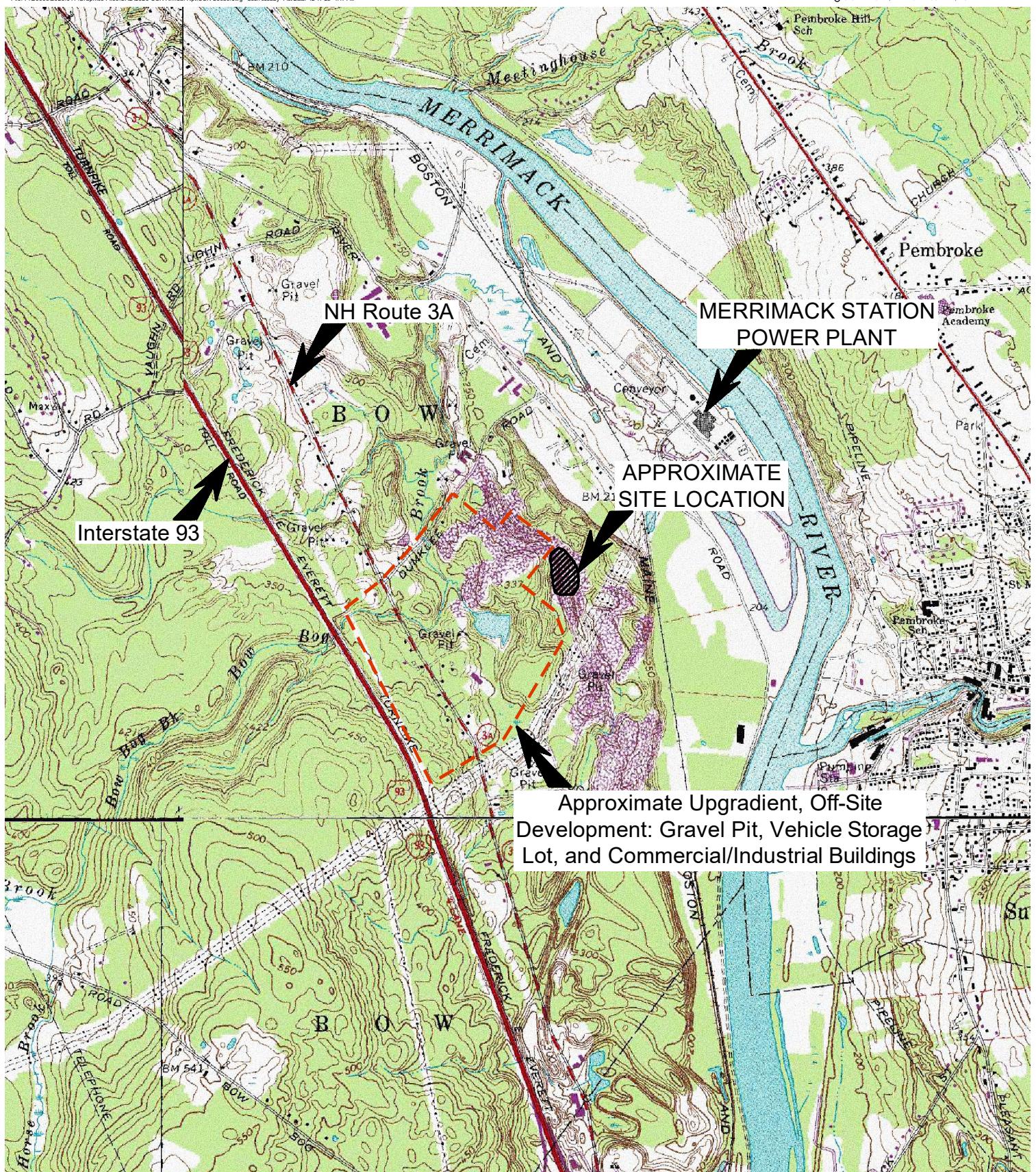
"†" indicates the RCMP lists the value as not currently available.

"‡" indicates the value provided is typically applied to field-filtered samples (i.e., dissolved analytes) for overburden monitoring wells.

"NA" indicates the RCMP lists the value as not applicable.

"NS" indicates the analyte is not listed in the RCMP or MCL list.

"c" indicates sample rounds collected as part of the retesting program for identifying statistically significant increases (SSIs).


TABLE 2
Groundwater Level Measurements Summary
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Date	Depths and elevations in feet.															Inferred General Groundwater Flow Rate (feet/day)	Inferred General Groundwater Flow Direction		
	SB-1			SB-4			SB-6			SB-13			SB-14						
	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation				
Feb-16	240.85	33.82	207.03	274.26	67.36	206.90	268.77	61.84	206.93	219.86	11.83	208.03	242.70	34.88	207.82	0.5 - 2.7	Northeast		
Apr-16	240.85	32.19	208.66	274.26	65.63	208.63	268.77	60.07	208.70	219.86	10.16	209.70	242.70	33.13	209.57	0.5 - 2.5	Northeast		
Jun-16	240.85	31.84	209.01	274.26	66.24	208.02	268.77	60.80	207.97	219.86	11.11	208.75	242.70	33.93	208.77	0.4 - 1.9	East		
Jul-16	240.85	33.88	206.97	274.26	67.30	206.96	268.77	62.07	206.70	219.86	12.41	207.45	242.70	35.10	207.60	0.4 - 1.9	Northeast		
Aug-16	240.85	35.09	205.76	274.26	68.54	205.72	268.77	63.19	205.58	219.86	13.76	206.10	242.70	36.39	206.31	0.3 - 1.4	Northeast		
Oct-16	240.85	36.20	204.65	274.26	69.68	204.58	268.77	64.42	204.35	219.86	13.92	205.94	242.70	37.58	205.12	0.8 - 3.9	North-Northeast		
Nov-16	240.85	36.40	204.45	274.26	69.93	204.33	268.77	64.69	204.08	219.86	15.14	204.72	242.70	37.80	204.90	0.3 - 1.6	East-Northeast		
Apr-17	240.85	32.27	208.58	274.26	65.82	208.44	268.77	60.04	208.73	219.86	9.58	210.28	242.70	32.99	209.71	0.8 - 3.8	North-Northeast		
Nov-17	240.85	32.87	207.98	274.26	66.39	207.87	268.77	60.97	207.80	219.86	11.33	208.53	242.70	34.08	208.62	0.4 - 1.8	Northeast		
Apr-18	240.85	31.13	209.72	274.26	64.58	209.68	268.77	58.93	209.84	219.86	8.74	211.12	242.70	31.94	210.76	0.6 - 3.2	North-Northeast		
Jul-18	240.85	32.60	208.25	274.26	66.01	208.25	268.77	60.84	207.93	219.86	11.13	208.73	242.70	33.78	208.92	0.4 - 2.0	Northeast		
Nov-18	240.85	29.99	210.86	274.26	63.59	210.67	268.77	57.92	210.85	219.86	7.66	212.20	242.70	30.82	211.88	0.7 - 3.3	Northeast		
Apr-19	240.85	29.83	211.02	274.26	63.34	210.92	268.77	57.60	211.17	219.86	7.51	212.35	242.70	30.72	211.98	0.6 - 2.9	North-Northeast		
Jul-19	-	-	-	-	-	-	268.77	58.71	210.06	-	-	-	-	-	-	-	-		
Nov-19	240.85	34.48	206.37	274.26	67.96	206.30	268.77	62.66	206.11	219.86	13.21	206.65	242.70	35.85	206.85	0.3 - 1.3	East-Northeast		
Feb-20	-	-	-	274.26	66.67	207.59	268.77	61.12	207.65	-	-	-	-	-	-	-	-		
Apr-20	240.85	31.84	209.01	274.26	65.34	208.92	268.77	59.73	209.04	219.86	9.62	210.24	242.70	32.75	209.95	0.6 - 3.0	North-Northeast		
Jul-20	-	-	-	274.26	66.00	208.26	-	-	-	219.86	11.00	208.86	-	-	-	-	-		
Nov-20	240.85	35.72	205.13	274.26	69.23	205.03	268.77	63.92	204.85	219.86	14.48	205.38	242.70	37.09	205.61	0.3 - 1.3	East-Northeast		
Feb-21	240.85	33.85	207.00	274.26	67.36	206.90	-	-	-	219.86	12.12	207.74	242.70	34.88	207.82	-	-		
Apr-21	240.85	33.37	207.48	274.26	66.88	207.38	268.77	61.31	207.46	219.86	11.43	208.43	242.70	34.38	208.32	0.5 - 2.4	Northeast		
Sep-21	240.85	31.11	209.74	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Nov-21	240.85	31.65	209.20	274.26	65.17	209.09	268.77	59.72	209.05	219.86	10.04	209.82	242.70	32.78	209.92	0.4 - 1.9	Northeast		
Apr-22	240.85	31.10	209.75	274.26	64.61	209.65	268.77	59.12	209.65	219.86	9.22	210.64	242.70	32.05	210.65	0.5 - 2.5	Northeast		
Nov-22	240.85	35.06	205.79	274.26	68.62	205.64	268.77	63.27	205.50	219.86	13.80	206.06	242.70	36.46	206.24	0.3 - 1.4	East-Northeast		
Feb-23	240.85	32.98	207.87	274.26	66.50	207.76	-	-	-	-	-	-	242.70	33.99	208.71	-	-		
Apr-23	240.85	31.02	209.83	274.26	64.51	209.75	268.77	59.08	209.69	219.86	8.94	210.92	242.70	31.94	210.76	0.6 - 3.0	Northeast		
Aug-23	240.85	30.47	210.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Nov-23	240.85	32.37	208.48	274.26	65.80	208.46	268.77	60.44	208.33	219.86	10.85	209.01	242.70	33.51	209.19	0.4 - 1.8	Northeast		
Mar-24	240.85	30.55	210.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Apr-24	240.85	28.65	212.20	274.26	62.24	212.02	268.77	56.65	212.12	219.86	6.12	213.74	242.70	29.53	213.17	0.8 - 4.0	North-Northeast		
Sep-24	240.85	33.07	207.78	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Nov-24	240.85	34.86	205.99	274.26	68.34	205.92	268.77	63.03	205.74	219.86	13.62	206.24	242.70	37.29	205.92	0.2 - 1.2	Northeast		
Apr-25	240.85	33.42	207.43	274.26	66.95	207.31	268.77	61.37	207.40	219.86	11.36	208.50	242.70	34.40	208.30	0.5 - 2.7	Northeast		
Nov-25	240.85	35.09	205.76	274.26	68.60	205.66	268.77	63.30	205.47	219.86	13.86	206.00	242.70	36.49	206.21	0.3 - 1.3	East-Northeast		

Notes:

1. Depths to water were obtained from information provided in laboratory reports and field sampling sheets prepared by Eurofins Environment Testing Northeast, LLC, (Eurofins, formerly Eastern Analytical, Inc.).
2. Inferred general groundwater flow rates and flow directions are approximate and are based on the limited hydrogeologic and groundwater elevation data available. Other interpretations are possible and actual conditions may vary from those indicated. Note that groundwater elevations, directions, and rates may change due to seasonal or other variations in temperature, precipitation, runoff, or other factors.
3. Approximate groundwater flow rates were calculated using an assumed saturated hydraulic conductivity of 100 to 500 feet per day, and an assumed porosity of 39%. Assumptions are consistent with values typical of medium-grained, clean sand. The calculated groundwater flow rate is equivalent to the average interstitial velocity or the seepage velocity.

Figures

Drawn By: C. Selby
Designed By: H. Roakes
Reviewed By: J. Scott
Project No: 2025.017
Date: January 2026

1000 0 2000 Feet

SANBORN || **HEAD**

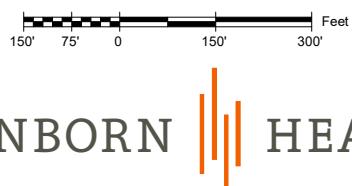
Figure 1
Locus Plan

Merrimack Station
Coal Ash Landfill
Bow, New Hampshire

Figure 2

Facility Plan

Merrimack Station Coal Ash Landfill Bow, New Hampshire


Drawn By: C. Selby
Designed By: H. Roakes
Reviewed By: J. Scott
Project No: 2025.017
Date: January 2026

Notes

1. The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
2. The location of the landfill and the site features shown should be considered approximate.

Legend

- SB-4 Monitoring Well
- · — Right-Of-Way
- x — Fence
- OU — Overhead Utilities
- 250 — Elevation Contour

SANBORN ||| HEAD

Appendix A

Limitations

APPENDIX A

LIMITATIONS

1. The conclusions and recommendations described in this report are based in part on the data obtained from a limited number of samples from widely-spaced locations. The sample results indicate conditions only at the specific location and time. They do not necessarily reflect variations that may exist between or within such locations, and the nature and extent of variations between or within these locations may not become evident until further investigation or remediation is initiated. The validity of the conclusions is based in part on assumptions Sanborn Head has made about conditions at the site. If conditions different from those described become evident, then it will be necessary to reevaluate the conclusions of this report.
2. Water level measurements were made at monitoring locations at times and under conditions stated within the report. Fluctuations in water levels may occur due to seasonal or other variations in precipitation, temperature, runoff, pumping, flooding, and other factors.
3. Quantitative laboratory analyses were performed as noted within this report. Additional compounds not searched for during the current study may be present at the site. Sanborn Head relied upon the data provided by the analytical laboratory and did not perform an independent evaluation of the reliability of these data. Moreover, variations in the types and concentrations of contaminants and variations in their distributions may occur due to the passage of time, water table fluctuations, precipitation and recharge events, and other factors.
4. The conclusions and recommendations contained in this report are based in part upon various types of chemical data as well as historical and hydrogeologic information developed during previous studies. While Sanborn Head reviewed those data and information as stated in this report, any of Sanborn Head's interpretations, conclusions, and recommendations that have relied on that information will be contingent on its validity. Should additional chemical data, historical information, hydrogeologic information, or other relevant information become available in the future, such information should be reviewed by Sanborn Head and the interpretations, conclusions, and recommendations presented herein should be modified accordingly.
5. This report was prepared for the exclusive use of GSP Merrimack LLC (GSP) for specific application for 40 CFR Part 257.90 compliance for GSP's Merrimack Station Coal Ash landfill in Bow, New Hampshire, and it was prepared in accordance with generally-accepted hydrogeologic practices. No warranty, express or implied, is made.

Appendix B

Alternative Source Demonstration

Allan G. Palmer
GSP Merrimack LLC
431 River Road
Bow, NH 03304

May 6, 2025
File No. 2025.017

Re: Alternative Source Demonstration
November 2024 Sampling
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Sanborn, Head & Associates, Inc. (Sanborn Head) prepared this Alternative Source Demonstration (ASD) for the Merrimack Station Coal Ash Landfill Site (the Site) located in Bow, New Hampshire. A qualified professional engineer certification is provided in Attachment A. This ASD was prepared in accordance with the Coal Combustion Residual (CCR) Rules (40 CFR Part 257) and is subject to the Limitations provided in Attachment B. A Locus Plan for the Site is provided as Figure 1.

INTRODUCTION

Based on the prediction interval procedure performed by Sanborn Head, a statistically significant increase (SSI) compared to background groundwater concentrations was identified for sulfate at SB-1.¹ As such, pursuant to 40 CFR Part 257.94(e)(2), within 90 days of detecting an SSI, the owner or operator may provide a written demonstration from a qualified professional engineer that: (i) a source other than the CCR unit caused the SSI; or (ii) the SSI resulted from either an error in sampling, analysis, or statistical evaluation; or natural variation in groundwater chemistry.

Groundwater analytical data are provided in Table 1, and groundwater elevation data are provided in Table 2. The locations of the monitoring wells in relation to the landfill are indicated on the Facility Plan provided as Figure 2.

BACKGROUND

The sulfate SSI is based on a sample collected from SB-1 in November 2024. Using a weight-of-evidence approach, we conclude that the SSI is not sourced from the CCR unit based on the following findings:

- Sulfate concentrations are within the range of naturally occurring concentrations.
- If the SSI was from CCR impacts to groundwater, then coincident increased total dissolved solids (TDS) and changed groundwater chemistry in the SSI samples should be caused by increases in Appendix III analytes, such as calcium, chloride, sulfate, and boron. Because constituents other than Appendix III analytes contribute about half of increased TDS in

¹ The November 2024 laboratory analytical data were received on December 16, 2024. Confirmatory sampling, which may be used with the “1-of-2” retesting strategy for detecting an SSI, was elected to not be completed.

recent SB-1 sulfate SSI samples, including the subject November 2024 sample, the increased TDS and changed chemistry in the SSI samples are indicative of natural variation and are not consistent with CCR impacts to groundwater.

- A comparison of major ion signatures indicates the sulfate SSI is not sourced from CCR impacts to groundwater at SB-1.

Further details supporting each of these findings are provided below.

NATURALLY OCCURRING AND AMBIENT CONCENTRATIONS

Sulfate occurs naturally in groundwater in the region through rain, atmospheric deposition, and dissolution of ion-producing minerals in rock and soil. Human activities, such as agriculture and subsurface wastewater discharge, may also contribute to sulfate concentrations in groundwater. There is off-site development upgradient of the Site, including a gravel pit, vehicle storage lots, roadways, and commercial/industrial buildings. These off-site features are indicated on Figure 1.

The sulfate SSI concentration is within the range of naturally occurring or ambient concentrations for comparable groundwaters, as reported in local aquifer, state-wide, and regional studies summarized in Exhibit 1 below.^{2,3,4} The local aquifer and state-wide U.S. Geological Survey (USGS) studies are specific to stratified drift aquifers with similar geology to the Site, and the regional study is applicable to the Site because the glacial outwash overburden at the Site is eroded from the underlying crystalline rock and has similar mineralogical composition to the aquifers in the regional USGS study. The sulfate SSI concentration was greater than the values detected in the small local study, but it was well within the range of sulfate concentrations reported in the state and regional studies.

² U.S. Geological Survey. 1997. *Geohydrology and Water Quality of Stratified-Drift Aquifers in the Upper Merrimack River Basin, South-Central New Hampshire*; and U.S. Geological Survey. 1995. *Geohydrology and Water Quality of Stratified-Drift Aquifers in the Middle Merrimack River Basin, South-Central New Hampshire*.

³ U.S. Geological Survey. 1995. *Ground-Water Resources in New Hampshire: Stratified-Drift Aquifers*.

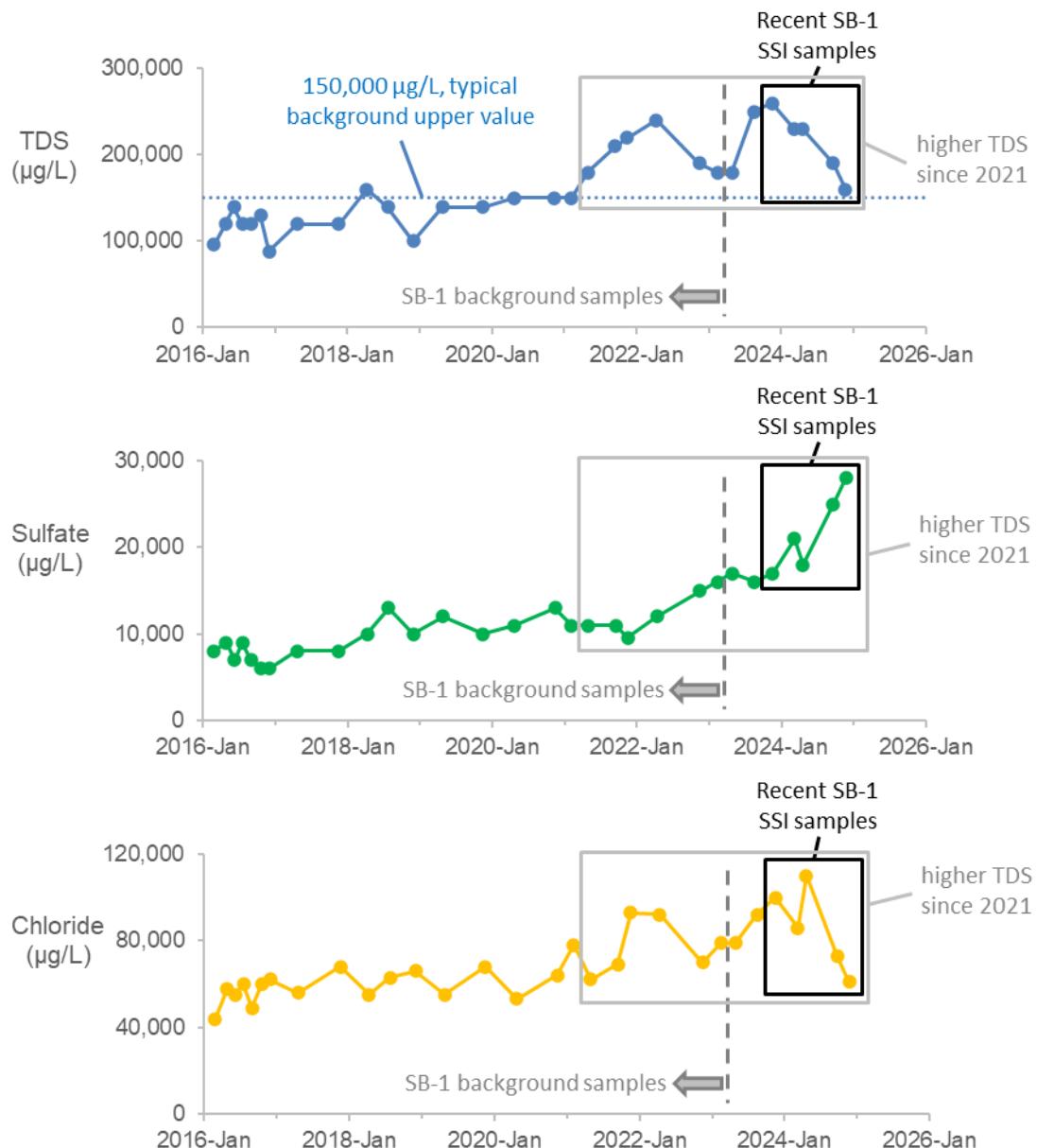
⁴ U.S. Department of the Interior and U.S. Geological Survey. 2012. *Quality of Water from Crystalline Rock Aquifers in New England, New Jersey, and New York, 1995-2007*.

Exhibit 1: Comparison of Site Sulfate Concentrations and Literature Values

Study/Location	Sulfate (µg/L)	
SSI data	SB-1 November 2024:	28,000
Site Upgradient SB-13 Data February 2016 through November 2024 [sample size (n)=25]	Min: Median: Max:	5,900 8,000 11,000
Local Stratified Drift Aquifers [n=16]	Minimum: Median: Maximum:	1,000 7,500 14,000
New Hampshire Stratified Drift Aquifers [n=256]	Minimum: Median: Maximum:	<100 7,800 79,000
Northeast Crystalline Rock Aquifers [n=117]	Minimum: Median: 90 th percentile: Maximum:	310 13,420 26,000 68,480

See text and footnotes for references.

µg/L = micrograms per liter


In addition to the above, the sulfate SSI concentration was less than the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) for sulfate of 250,000 µg/L and less than the New Hampshire Ambient Groundwater Quality Standard (AGQS) for sulfate of 500,000 µg/L.

TDS AND OTHER INDICATOR ANALYTES

The CCR Rules for detection monitoring require analysis of boron, calcium, chloride, fluoride, pH, sulfate, and TDS (i.e., the Appendix III indicator analytes).

In addition to the sulfate SSI detected at SB-1 in November 2024, other sulfate SSIs were recently detected at SB-1 based on samples collected in November 2023, March 2024, April 2024, and September 2024. These other SB-1 sulfate SSIs were demonstrated in prior ASDs to be sourced from natural variation. The recent SSIs for sulfate coincided with increased TDS relative to the intrawell background samples for SB-1 (i.e., samples collected prior to April 2023). The recent SB-1 sulfate SSI sample TDS concentrations of 160,000 to 260,000 µg/L are greater than the typical background TDS of 150,000 µg/L or less, especially for the background samples collected prior to 2021 that make up about 75% of the background data set. The relative increase indicates a shift in groundwater chemistry from the lower TDS typical of earlier background samples to increased TDS since 2021, including the recent SB-1 SSI samples. Time series trends showing the TDS, sulfate, and chloride concentrations for SB-1 are provided as Exhibit 2. Chloride is included in Exhibit 2 because, along with sulfate, it is an Appendix III analyte that reflects changed groundwater chemistry with increased TDS levels that are indicative of natural variation and are not consistent with CCR impacts to groundwater, as further discussed below.

Exhibit 2: TDS, Sulfate, and Chloride Concentrations for SB-1

TDS is a relatively general, non-targeted analysis that measures the amounts of inorganic salts and dissolved organic matter present in the sample. TDS is a collective measure that includes the dissolved Appendix III indicator analytes boron, calcium, chloride, fluoride, and sulfate, as well as other dissolved constituents, such as sodium, alkalinity, magnesium, potassium, and silica. The laboratory method for TDS includes filtering the sample and evaporating the water so that residual solids from the sample can be measured; laboratory TDS measurements do not distinguish between individual analytes or constituents.

The greater TDS and changed groundwater chemistry are not consistent with CCR impacts. If the recent SB-1 sulfate SSIs were from CCR impacts to groundwater, then the greater TDS in recent SSI samples as compared to typical background should be caused by increases in

Appendix III analytes. An analysis of Appendix III indicator analyte contributions to the TDS in SSI samples is shown in Exhibit 3.

- For the recent SB-1 sulfate SSI samples, sulfate and chloride are the only Appendix III indicator analytes that contributed to greater than 5% of the TDS increases in SSI samples.
- For the recent SB-1 sulfate SSI samples, about 40 to 60% of the increase in TDS was from parameters not included in CCR Appendix III detection monitoring analytes, such as magnesium, sodium, and alkalinity.
- For the November 2024 sample, sulfate was the primary constituent associated with the TDS increase, and chloride concentrations were lower than in the reference background sample resulting in a negative percent TDS contribution.

Overall, the greater TDS levels associated with chloride and non-Appendix III analytes are not indicative of groundwater chemistry changes from CCR impacts. The November 2024 sample results, and to a lesser extent the September 2024 sample results, show a shift in groundwater chemistry to increased sulfate contributions to TDS and decreased chloride contributions to TDS. Regardless of the shift from chloride to sulfate contributions to TDS in November 2024, about half of the TDS change from background was still attributable to non-Appendix III analytes.

Although chloride is included as an Appendix III indicator analyte, chloride is not a strong indicator for potential leachate impacts to groundwater for the Site. Chloride concentrations in groundwater may be affected by a variety of human activities. Off-site development upgradient of the Site, indicated on Figure 1, includes a gravel pit, vehicle storage lots, roadways, and commercial/industrial buildings. Road salting and subsurface wastewater discharge at these developed areas may result in chloride-containing salt impacts to groundwater. Sodium chloride and calcium chloride salt also may have been applied or may have been carried onto gravel roads via truck traffic around the Site through years of sand and gravel mining and landfill operations. In contrast to potentially strong chloride signatures for off-site and non-landfill activities, chloride concentrations in leachate collected at the Site typically contribute about 10 percent or less of leachate TDS. With such a weak chloride signature in leachate, increases in groundwater TDS associated with chloride are not an indicator of landfill related impacts.

Exhibit 3: Analysis of Appendix III Analyte Contributions to Increased TDS in SSI Samples

		SB-1 November 2023	SB-1 March 2024	SB-1 April 2024	SB-1 September 2024	SB-1 November 2024	
November 2018 Background Concentrations ($\mu\text{g/L}$)	SSI Sample Concentrations ($\mu\text{g/L}$)	Calcium	11,000	11,000	11,000	11,000	11,000
SSI Sample Concentrations ($\mu\text{g/L}$)	SSI Sample Concentrations ($\mu\text{g/L}$)	Sulfate	10,000	10,000	10,000	10,000	10,000
SSI Sample Concentrations ($\mu\text{g/L}$)	SSI Sample Concentrations ($\mu\text{g/L}$)	Boron	59	59	59	59	59
SSI Sample Concentrations ($\mu\text{g/L}$)	SSI Sample Concentrations ($\mu\text{g/L}$)	Fluoride	<100	<100	<100	<100	<100
SSI Sample Concentrations ($\mu\text{g/L}$)	SSI Sample Concentrations ($\mu\text{g/L}$)	Chloride	68,000	68,000	68,000	68,000	68,000
SSI Sample Concentrations ($\mu\text{g/L}$)	SSI Sample Concentrations ($\mu\text{g/L}$)	TDS	140,000	140,000	140,000	140,000	140,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Calcium	17,000	20,000	16,000	12,000	10,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Sulfate	17,000	21,000	18,000	25,000	28,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Boron	92	110	73	120	96
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Fluoride	<100	-	<100	-	<100
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Chloride	100,000	86,000	110,000	73,000	61,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	TDS	260,000	230,000	230,000	190,000	160,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Calcium	6,000	9,000	5,000	1,000	-1,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Sulfate	7,000	11,000	8,000	15,000	18,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Boron	33	51	14	61	37
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Fluoride	~0	~0	~0	~0	~0
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	Chloride	32,000	18,000	42,000	5,000	-7,000
Concentration Change ($\mu\text{g/L}$)	Concentration Change ($\mu\text{g/L}$)	TDS	120,000	90,000	90,000	50,000	20,000
Percent of TDS Change	Percent of TDS Change	Calcium	5.0%	10%	5.6%	2.0%	-5.0%
Percent of TDS Change	Percent of TDS Change	Sulfate	5.8%	12%	8.9%	30%	90%
Percent of TDS Change	Percent of TDS Change	Boron	0.028%	0.057%	0.016%	0.12%	0.19%
Percent of TDS Change	Percent of TDS Change	Fluoride	~0%	-	~0%	-	~0%
Percent of TDS Change	Percent of TDS Change	Chloride	27%	20%	47%	10%	-35%
Percent of TDS Change	Percent of TDS Change	Non-Appendix III Analytes	62%	58%	39%	58%	50%

The November 2019 sampling event was selected for background comparison because it is a background sampling event with TDS values lower than the corresponding SSI samples.

“Percent of TDS Change” is calculated by dividing the change in analyte by the change in TDS. For non-Appendix III Analytes, percent change was calculated as 100% less the sum of Appendix III percent changes.

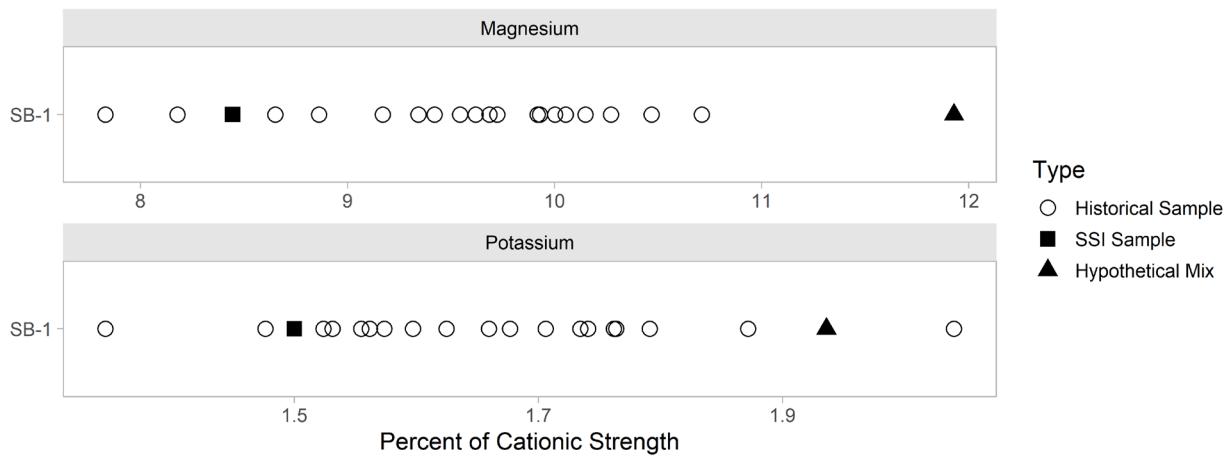
“<” indicates the analyte was not detected at the indicated reporting limit.

“-” indicates the analyte was not tested for.

Values are displayed to two significant figures.

Because the increased TDS in the recent SB-1 sulfate SSI samples are in large part associated with increases in non-Appendix III analytes, the increased TDS and changed chemistry in the SSI samples are indicative of natural variation, which may include background anthropogenic influences, and are not consistent with CCR impacts to groundwater.

COMPARISON OF MAJOR ION SIGNATURES


Groundwater samples have been analyzed for major ion chemistry since July 2018. Five leachate samples from the Site have also been analyzed for major ion chemistry. These data for SB-1 are presented as plotted values in Figure 3. The major ion chemistry data show that SB-1 samples are typically sodium-chloride water types, including the two SSI samples. The leachate is characterized as a [sodium calcium magnesium]-sulfate water type.

A calculated, hypothetical mix of a background (pre-SSI) sample and a leachate sample are also shown in Figure 3. The major ion chemistry for the “mix” sample is based on the SB-1 November 2019 background sample, which had relatively low TDS, and the September 2024 leachate sample, which had relatively high TDS. The ratio of background sample to leachate sample was adjusted so that the TDS concentration of the “mix” sample is equal to the TDS concentration for the SB-1 November 2024 SSI sample. The “mix” sample represents a hypothetical SSI groundwater sample if the increased TDS in the SSI sample was caused by leachate impacts.

Sulfate is the predominant major anion in leachate and is not a predominant major anion in Site groundwater, so the hypothetical mix sample shows increased sulfate levels over the background groundwater samples. However, the SB-1 November 2024 sample has greater increase in sulfate than the mix sample; this is associated with the shift in groundwater chemistry from chloride to sulfate observed in the SB-1 September 2024 and November 2024 data (as discussed in the ‘TDS and Other Indicator Analytes’ section, above).

For cationic signatures, the leachate has more magnesium and potassium than Site groundwater. The magnesium and the potassium levels for historical data, the SSI data, and the hypothetical mix sample are shown in Exhibit 4. The SSI data are consistent with historical data and have overall lower magnesium and potassium levels. This pattern in the SSI data is not consistent with the mix samples, which show higher magnesium and potassium levels.

Exhibit 4: Magnesium and Potassium Signatures

Based on the contrasting ionic signatures between the hypothetical mix samples and the SSI sample, particularly in the cationic signature, the mixing model results are not indicative of impacts from leachate.

CLOSING

Based on our understanding of the information presented herein, including the Site characteristics, natural variation of regional groundwater chemistry, and groundwater monitoring data, the November 2024 SB-1 sulfate SSI is not sourced from the CCR unit.

Thank you for the opportunity to be of service to GSP Merrimack LLC. We look forward to continuing to work with you on this project.

Very truly yours,
SANBORN, HEAD & ASSOCIATES, INC.

Harrison R. Roakes, PE
Lead Engineer

Julie S. Scott, TURP
Senior Vice President

HRR/JSS: hrr

Encl. Table 1 – Groundwater Analytical Results Summary
Table 2 – Groundwater Level Measurements Summary
Figure 1 – Locus Plan
Figure 2 – Facility Plan
Figure 3 – SB-1 Major Ion Signature
Attachment A – Qualified Professional Engineer Certification
Attachment B – Limitations

P:\2000s\2025.017\Source Files\202505 ASD\202505 ASD.docx

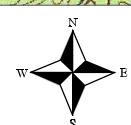
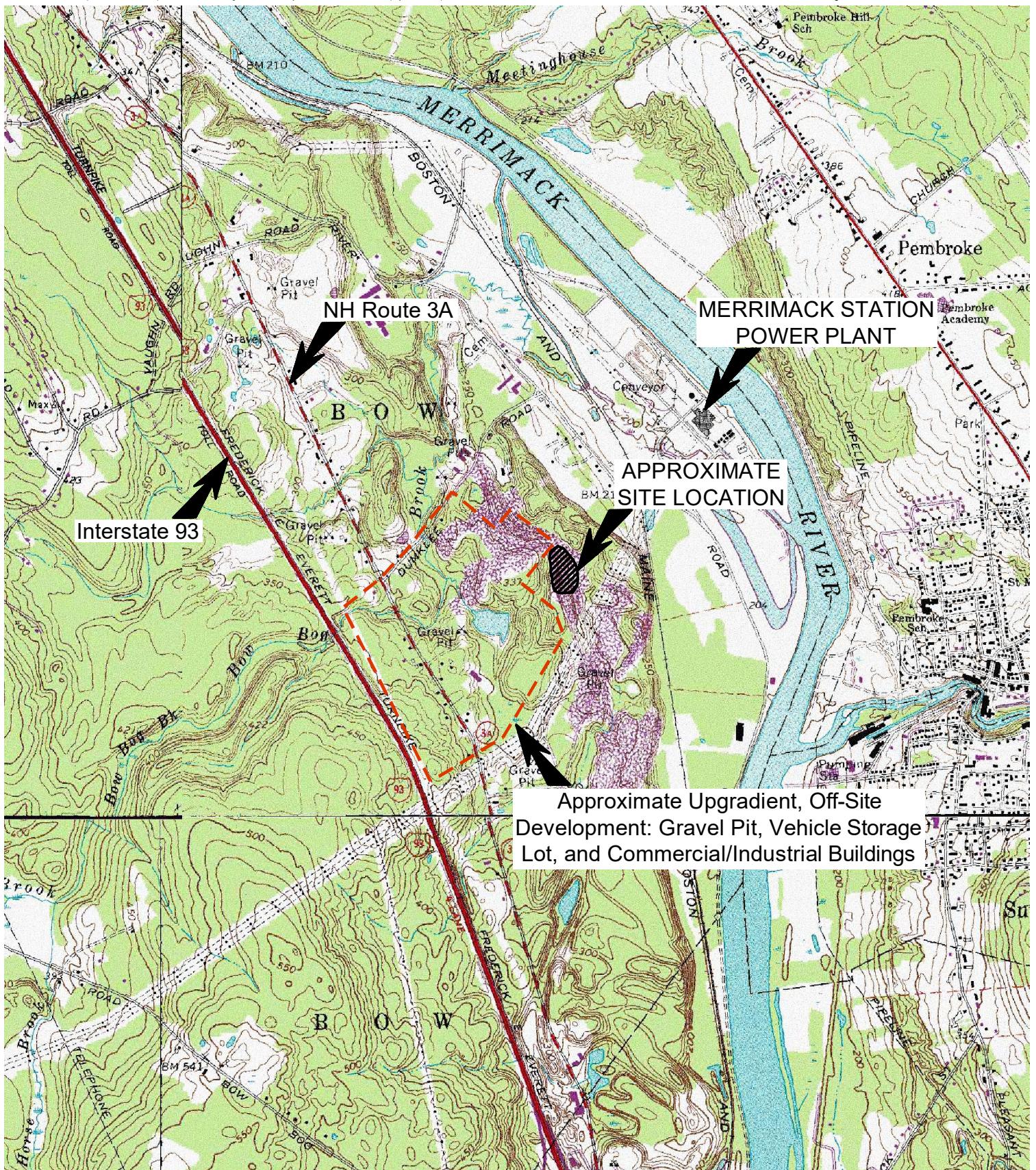
Tables

TABLE 1
Groundwater Analytical Results Summary
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Location	Date	Metals														Miscellaneous Parameters							
		µg/L														s.u			pCi/L				
		Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	pH	Radium 226	Radium 228	Radium 226+228
Drinking Water MCL	6	5	2,000	4	NS	5	NS	100	NS	15*	NS	2	NS	50	2	NS	4,000	NS	NS	NS	NS	NS	5
CCR Alt. Standards	NA	NA	NA	NA	NA	NA	NA	NA	6	15	40	NA	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GW-1/(AGQS)	6 ‡	5 ‡	2,000 ‡	4 ‡	6,000 ‡	5 ‡	NS ‡	100	NS ‡	15 ‡	NS	2 ‡	NS	50 ‡	2 ‡	NS	4,000	500,000	NS	NS	NS	NS	NS
GW-2	NA	NA	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
2/24/2016	<1.0	<1.0	14	<1.0	60	<1.0	7,200	<1.0	<1.0	<1.0	<1,000	<0.10	<1.0	<1.0	<1.0	44,000	<100	8,000	96,000	5.21	0.2 ±0.1	0.6 ±0.6	0.8 ±0.6
4/25/2016	<1.0	<1.0	18	<1.0	100	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	1.0	<1.0	<1.0	58,000	<100	9,000	120,000	5.72	0.5 ±0.2	0.2 ±0.4	0.7 ±0.4
6/6/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,200	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	55,000	<100	7,000	140,000	5.52	0.6 ±0.3	0.2 ±0.5	0.8 ±0.5
7/18/2016	<1.0	<1.0	16	<1.0	70	<1.0	8,600	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	60,000	<100	9,000	120,000	5.35	0.4 ±0.3	0.0 ±0.6	0.4 ±0.6
8/30/2016	<1.0	<1.0	17	<1.0	<50	<1.0	7,900	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	49,000	<100	7,000	120,000	5.23	0.4 ±0.3	0.3 ±0.4	0.7 ±0.4
10/17/2016	<1.0	<1.0	17	<1.0	<50	<1.0	9,700	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	60,000	<100	6,000	130,000	5.63	0.6 ±0.4	0.0 ±0.4	0.6 ±0.4
11/29/2016	<1.0	<1.0	16	<1.0	<50	<1.0	8,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	62,000	<100	6,000	88,000	5.63	1.0 ±0.4	0.8 ±0.5	1.8 ±0.5
4/19/2017	<1.0	<1.0	16	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	56,000	<100	8,000	120,000	5.81	0.4 ±0.3	0.2 ±0.5	0.6 ±0.5
11/17/2017			50													68,000	<100	8,000	120,000	5.70			
1/31/2018	c																						
4/9/2018			67													55,000	<100	10,000	160,000	5.90			
7/25/2018	c															63,000	<100	13,000	140,000	5.94			
11/29/2018			87													66,000	<100	10,000	100,000	6.07			
4/26/2019			100													55,000	<100	12,000	140,000	5.78			
11/15/2019			59													68,000	<100	10,000	140,000	5.56			
4/23/2020			70													53,000	<100	11,000	150,000	5.94			
11/12/2020			<50													64,000	<100	13,000	150,000	5.36			
2/4/2021	c															78,000		11,000	180,000	5.42			
4/28/2021			78													62,000	<100	11,000	210,000	6.21			
9/14/2021	c		58													69,000	<100	11,000	210,000	4.99			
11/15/2021			<50													93,000	<100	9,600	220,000	4.99			
4/11/2022			81													92,000	<100	12,000	240,000	5.75			
11/14/2022			79													70,000	<100	15,000	190,000	5.36			
2/13/2023	c															79,000		16,000	180,000	5.42			
4/27/2023			130													79,000	<100	17,000	180,000	5.53			
8/17/2023	c		83													92,000		16,000	250,000	5.70			
11/16/2023			92													100,000	<100	17,000	260,000	5.32			
3//2024	c		110													86,000		21,000	230,000	5.58			
4/19/2024			73													110,000	<100	18,000	230,000	5.55			
9/20/2024	c		120													73,000		25,000	190,000	5.40			
11/22/2024			96													61,000	<100	28,000	160,000	5.54			
2/23/2016	<1.0	<1.0	14	<1.0	<50	<1.0	8,400	<1.0	<1.0	<1.0	<1,000	<0.10	<1.0	<1.0	<1.0	95,000	<100	9,000	210,000	5.49	0.3 ±0.1	1.0 ±0.6	1.3 ±0.6
4/25/2016	<1.0	<1.0	14	<1.0	<50	<1.0	9,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	110,000	<100	8,000	200,000	5.32	0.3 ±0.3	0.0 ±0.4	0.3 ±0.4
6/6/2016	<1.0	<1.0	12	<1.0	<50	<1.0	8,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	110,000	<100	10,000	230,000	5.62	0.2 ±0.2	0.4 ±0.5	0.6 ±0.5
7/18/2016	<1.0	<1.0	11	<1.0	<50	<1.0	7,800	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	11,000	220,000	5.27	0.4 ±0.3	0.4 ±0.6	0.8 ±0.6
8/30/2016	<1.0	<1.0	10	<1.0	<50	<1.0	6,800	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	88,000	<100	12,000	210,000	5.72	0.2 ±0.2	0.0 ±0.4	0.2 ±0.4
10/17/2016	<1.0	<1.0	12	<1.0	<50	<1.0	8,400	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	10,000	190,000	5.71	0.3 ±0.3	0.0 ±0.5	0.3 ±0.5
11/29/2016	<1.0	<1.0	12	<1.0	<50	<1.0	7,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	100,000	<100	10,000	180,000	5.79	0.7 ±0.3	0.5 ±0.5	1.2 ±0.5
4/19/2017	<1.0	<1.0	19	<1.0	<50	<1.0	10,000	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	120,000	<100	9,000	260,000	5.71	0.3 ±0.3	0.0 ±0.5	0.3 ±0.5
11/17/2017			<50													77,000	<100	13,000	170,000	5.80			
4/9/2018			<50													93,000	<100	12,000	220,000	5.87			
7/25/2018	c															95,000		11,000	210,000	5.68			
11/28/2018			<50													86,000	<100	13,000	83,000	6.28			
4/26/2019			<50													94,000	<100	11,000	190,000	5.83			
11/15/2019			53													97,000	<100	11,000	230,000	5.75			
2/14/2020	c		<50													100,000		14,000	190,000	5.85			
7/8/2020	c		57													140,000	<100	11,000	260,000	5.72			
11/12/2020			60													120,000	<100	18,000	260,000	5.18			
2/4/2021	c		70													100,000		20,000	240,000	5.22			
4/28/2021			65													100,000	<100	16,000	230,000	5.71			
11/15/2021			<50													130,000	<100	12,000	290,000	5.16			
4/11/2022			55													110,000	<100	20,000	250,000	5.68			
11/14/2022			<50													150,000	<100	9,700	320,000	5.46			
2/13/2023	c															140,000		11,000	250,000	5.49			
4/27/2023			<50													99,000		14,000	240,000	5.59			
11/16/2023			<50													100,000	<100	12,000	200,000	5.66			
4/19/2024			<50													91,000	<100	15,000	210,000	5.66			
11/22/2024			50													120,000	<100	11,000	230,000	5.43			
100,000	<100	13,000	130,000	5.83												100,000	<100	13,000	220,000	5.83			
2/23/2016	<1.0	<1.0	9.0	<1.0	<50	<1.0	5,300	<1.0	<1.0	<1.0	<100	<0.10	<1.0	<1.0	<1.0	80,000	<100	10,000	170,000	5.55	0.1 ±0.7	0.5 ±0.5	0.6 ±0.5
4/25/2016	<1.0	<1																					

TABLE 1
Groundwater Analytical Results Summary
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Location	Date	Metals													Miscellaneous Parameters									
		$\mu\text{g/L}$													pCi/L									
		Antimony	Arsenic	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Lead	Lithium	Mercury	Molybdenum	Selenium	Thallium	Chloride	Fluoride	Sulfate	Total Dissolved Solids	s.u.	pH	Radium 226	Radium 228
Drinking Water MCL	6	5	2,000	4	NS	5	NS	100	NS	15*	NS	2	NS	50	2	NS	4,000	NS	NS	NS	NS	NS	NS	5
CCR Alt. Standards	NA	NA	NA	NA	NA	NA	NA	NA	6	15	40	NA	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
GW-1/(AGQS)	6 ‡	5 ‡	2,000 ‡	4 ‡	6,000 ‡	5 ‡	NS ‡	100	NS ‡	15 ‡	NS	2 ‡	NS	50 ‡	2 ‡	NS	4,000	500,000	NS	NS	NS	NS	NS	NS
GW-2	NA	NA	NA	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	†	†	NS	NS	NS	NS	NS
2/23/2016	<1.0	<1.0	17	<1.0	<50	9,900	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	160,000	<100	6,000	270,000	5.34	0.6 ± 0.1	0.3 ± 0.6	0.9 ± 0.6
4/25/2016	<1.0	<1.0	17	<1.0	<50	8,800	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	160,000	<100	7,000	290,000	5.48	0.4 ± 0.3	0.1 ± 0.4	0.5 ± 0.4
6/6/2016	<1.0	<1.0	20	<1.0	<50	9,900	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	170,000	<100	7,000	320,000	5.50	0.8 ± 0.3	0.0 ± 0.5	0.8 ± 0.5
7/18/2016	<1.0	<1.0	18	<1.0	<50	9,700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	160,000	<100	8,000	330,000	5.27	0.8 ± 0.3	0.3 ± 0.6	0.8 ± 0.6
8/30/2016	<1.0	1.0	20	<1.0	<50	8,100	2.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	150,000	<100	8,000	270,000	5.35	0.8 ± 0.3	0.6 ± 0.4	1.4 ± 0.4
10/17/2016	<1.0	<1.0	15	<1.0	<50	8,800	2.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	150,000	<100	8,000	260,000	5.06	0.7 ± 0.4	0.6 ± 0.5	1.3 ± 0.5
11/29/2016	<1.0	<1.0	16	<1.0	<50	7,400	1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	140,000	<100	8,000	240,000	5.71	0.6 ± 0.3	0.7 ± 0.5	1.3 ± 0.5
4/19/2017	<1.0	<1.0	16	<1.1	<51	8,000	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	130,000	<100	8,000	270,000	5.56	0.9 ± 0.3	0.3 ± 0.5	1.2 ± 0.5
11/17/2017				<50		7,000											110,000	<100	9,000	220,000	5.80			
4/9/2018				<50		11,000											170,000	<100	8,000	330,000	5.81			
7/25/2018	c					10,000											190,000		8,700	340,000	5.69			
11/28/2018				<50		13,000											200,000	<100	7,200	260,000	5.77			
4/26/2019				<50		14,000											200,000	<100	7,100	290,000	5.53			
11/15/2019				<50		8,100											140,000	<100	8,100	280,000	5.82			
4/23/2020				<50		14,000											230,000	<100	6,500	400,000	5.47			
7/8/2020	c			<50		14,000											210,000		6,900	370,000	5.41			
11/12/2020				<50		11,000											180,000	<100	8,000	330,000	4.96			
2/4/2021	c			<50		11,000											180,000		6,700	320,000	5.32			
4/28/2021				<50		14,000											240,000	<100	5,900	410,000	5.31			
11/15/2021				<50		11,000											200,000	<100	7,900	370,000	5.02			
4/11/2022				<50		9,800											190,000	<100	9,700	360,000	5.47			
11/14/2022				<50		7,700											150,000	<100	8,200	310,000	5.55			
4/27/2023				<50		14,000											210,000	<100	6,200	430,000	5.01			
11/16/2023				<50		3,900											94,000	<100	11,000	190,000	5.68			
4/19/2024				<50		9,300											160,000	<100	6,400	310,000	5.24			
11/22/2024				<50		3,400											70,000	<100	12,000	150,000	5.92			
SB-13	2/24/2016	<1.0	<1.0	3.0	<1.0	<50	6,100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	16,000	<100	4,000	56,000	5.05	0.2 ± 0.08	0.0 ± 0.5	0.2 ± 0.5
	4/25/2016	<1.0	<1.0	9.0	<1.0	<50	11,000	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	58,000	<100	3,000	140,000	5.62	0.8 ± 0.5	0.2 ± 0.1	1.0 ± 0.5
	6/6/2016	<1.0	<1.0	6.0	<1.0	<50	7,600	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	32,000	<100	4,000	100,000	5.39	0.5 ± 0.2	0.2 ± 0.5	0.7 ± 0.5
	7/18/2016	<1.0	<1.0	3.0	<1.0	<50	6,300	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	21,000	<100	5,000	68,000	5.31	0.2 ± 0.2	0.3 ± 0.5	0.5 ± 0.5
	8/30/2016	<1.0	<1.0	2.0	<1.0	<50	5,300	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	14,000	<100	4,000	71,000	5.81	0.4 ± 0.3	0.4 ± 0.5	0.8 ± 0.5
	10/17/2016	<1.0	<1.0	2.0	<1.0	<50	4,000	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	11,000	<100	4,000	29,000	5.55	0.2 ± 0.3	0.0 ± 0.5	0.2 ± 0.5
	11/29/2016	<1.0	<1.0	2.0	<1.0	<50	2,900	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	7,000	<100	4,000	12,000	5.19	0.2 ± 0.4	0.2 ± 0.5	0.4 ± 0.5
	4/19/2017	<1.0	<1.0	10	<1.0	<50	10,000	<1.0	<1.0	<1.0	<100	<1.0	<1.0	<1.0	<1.0	<1.0	56,000	<100	5,000	120,000	5.59	0.7 ± 0.3	0.1 ± 0.5	0.8 ± 0.5
	11/17/2017				<50		8,000										18,000	<100	5,000	59,000	5.60			
	4/9/2018				<50		4,200										14,000	<100	8,400	80,000	5.76			
	7/25/2018	c				5,100											9,800		6,100	56,000	5.61			
	11/28/2018				<50		4,500										7,800	<100	6,300	55,000	5.96			
	4/26/2019				<50		8,700										19,000	<100	3,700	91,000	5.74			
	11/15/2019				<50		5,000										12,000	<100	7,800	69,000	5.94			
	4/23/2020				<50		5,500										9,200	<100	5,500	52,000	5.63			
	11/12/2020				<50		4,000										4,700	<100	15,000	68,000	5.10			
	2/4/2021	c				7,900											34,000		6,000	95,000	5.30			
	4/28/2021				<50		3,300										4,000	<100	7,100	42,000	5.37			
	11/15/2021				<50		3,400										9,300	<100	16,000	64,000	5.55			
	4/11/2022				<50		4,400										12,000	<100	9,600	44,000	5.76			
	11/14/2022				<50		5,600										10,000	<100	18,000	72,000	5.74			
	2/13/2023	c				6,300											22,000		11,000	53,000	5.62			
	4/27/2023				<50		5,500										6,500	<100	7,400	59,000	5.12			
	11/16/2023				<50		4,900										18,000	<100	22,000	91,000	5.65			



TABLE 2
Groundwater Level Measurements Summary
Merrimack Station Coal Ash Landfill
Bow, New Hampshire

Date	Depths and elevations in feet.															Inferred General Groundwater Flow Rate (feet/day)	Inferred General Groundwater Flow Direction		
	SB-1			SB-4			SB-6			SB-13			SB-14						
	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation	Reference Elevation	Depth to Water	Water Elevation				
Feb-16	240.85	33.82	207.03	274.26	67.36	206.90	268.77	61.84	206.93	219.86	11.83	208.03	242.70	34.88	207.82	0.5 - 2.7	Northeast		
Apr-16	240.85	32.19	208.66	274.26	65.63	208.63	268.77	60.07	208.70	219.86	10.16	209.70	242.70	33.13	209.57	0.5 - 2.5	Northeast		
Jun-16	240.85	31.84	209.01	274.26	66.24	208.02	268.77	60.80	207.97	219.86	11.11	208.75	242.70	33.93	208.77	0.4 - 1.9	East		
Jul-16	240.85	33.88	206.97	274.26	67.30	206.96	268.77	62.07	206.70	219.86	12.41	207.45	242.70	35.10	207.60	0.4 - 1.9	Northeast		
Aug-16	240.85	35.09	205.76	274.26	68.54	205.72	268.77	63.19	205.58	219.86	13.76	206.10	242.70	36.39	206.31	0.3 - 1.4	Northeast		
Oct-16	240.85	36.20	204.65	274.26	69.68	204.58	268.77	64.42	204.35	219.86	13.92	205.94	242.70	37.58	205.12	0.8 - 3.9	North-Northeast		
Nov-16	240.85	36.40	204.45	274.26	69.93	204.33	268.77	64.69	204.08	219.86	15.14	204.72	242.70	37.80	204.90	0.3 - 1.6	East-Northeast		
Apr-17	240.85	32.27	208.58	274.26	65.82	208.44	268.77	60.04	208.73	219.86	9.58	210.28	242.70	32.99	209.71	0.8 - 3.8	North-Northeast		
Nov-17	240.85	32.87	207.98	274.26	66.39	207.87	268.77	60.97	207.80	219.86	11.33	208.53	242.70	34.08	208.62	0.4 - 1.8	Northeast		
Apr-18	240.85	31.13	209.72	274.26	64.58	209.68	268.77	58.93	209.84	219.86	8.74	211.12	242.70	31.94	210.76	0.6 - 3.2	North-Northeast		
Jul-18	240.85	32.60	208.25	274.26	66.01	208.25	268.77	60.84	207.93	219.86	11.13	208.73	242.70	33.78	208.92	0.4 - 2.0	Northeast		
Nov-18	240.85	29.99	210.86	274.26	63.59	210.67	268.77	57.92	210.85	219.86	7.66	212.20	242.70	30.82	211.88	0.7 - 3.3	Northeast		
Apr-19	240.85	29.83	211.02	274.26	63.34	210.92	268.77	57.60	211.17	219.86	7.51	212.35	242.70	30.72	211.98	0.6 - 2.9	North-Northeast		
Jul-19	-	-	-	-	-	-	268.77	58.71	210.06	-	-	-	-	-	-	-	-		
Nov-19	240.85	34.48	206.37	274.26	67.96	206.30	268.77	62.66	206.11	219.86	13.21	206.65	242.70	35.85	206.85	0.3 - 1.3	East-Northeast		
Feb-20	-	-	-	274.26	66.67	207.59	268.77	61.12	207.65	-	-	-	-	-	-	-	-		
Apr-20	240.85	31.84	209.01	274.26	65.34	208.92	268.77	59.73	209.04	219.86	9.62	210.24	242.70	32.75	209.95	0.6 - 3.0	North-Northeast		
Jul-20	-	-	-	274.26	66.00	208.26	-	-	-	219.86	11.00	208.86	-	-	-	-	-		
Nov-20	240.85	35.72	205.13	274.26	69.23	205.03	268.77	63.92	204.85	219.86	14.48	205.38	242.70	37.09	205.61	0.3 - 1.3	East-Northeast		
Feb-21	240.85	33.85	207.00	274.26	67.36	206.90	-	-	-	219.86	12.12	207.74	242.70	34.88	207.82	-	-		
Apr-21	240.85	33.37	207.48	274.26	66.88	207.38	268.77	61.31	207.46	219.86	11.43	208.43	242.70	34.38	208.32	0.5 - 2.4	Northeast		
Sep-21	240.85	31.11	209.74	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Nov-21	240.85	31.65	209.20	274.26	65.17	209.09	268.77	59.72	209.05	219.86	10.04	209.82	242.70	32.78	209.92	0.4 - 1.9	Northeast		
Apr-22	240.85	31.10	209.75	274.26	64.61	209.65	268.77	59.12	209.65	219.86	9.22	210.64	242.70	32.05	210.65	0.5 - 2.5	Northeast		
Nov-22	240.85	35.06	205.79	274.26	68.62	205.64	268.77	63.27	205.50	219.86	13.80	206.06	242.70	36.46	206.24	0.3 - 1.4	East-Northeast		
Feb-23	240.85	32.98	207.87	274.26	66.50	207.76	-	-	-	-	-	-	242.70	33.99	208.71	-	-		
Apr-23	240.85	31.02	209.83	274.26	64.51	209.75	268.77	59.08	209.69	219.86	8.94	210.92	242.70	31.94	210.76	0.6 - 3.0	Northeast		
Aug-23	240.85	30.47	210.38	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Nov-23	240.85	32.37	208.48	274.26	65.80	208.46	268.77	60.44	208.33	219.86	10.85	209.01	242.70	33.51	209.19	0.4 - 1.8	Northeast		
Mar-24	240.85	30.55	210.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Apr-24	240.85	28.65	212.20	274.26	62.24	212.02	268.77	56.65	212.12	219.86	6.12	213.74	242.70	29.53	213.17	0.8 - 4.0	North-Northeast		
Sep-24	240.85	33.07	207.78	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Nov-24	240.85	34.86	205.99	274.26	68.34	205.92	268.77	63.03	205.74	219.86	13.62	206.24	242.70	37.29	205.92	0.2 - 1.2	Northeast		

Notes:

1. Depths to water were obtained from information provided in laboratory reports and field sampling sheets prepared by Eurofins Environment Testing Eastern Analytical (EA, formerly Eastern Analytical, Inc.).
2. Inferred general groundwater flow rates and flow directions are approximate and are based on the limited hydrogeologic and groundwater elevation data available. Other interpretations are possible and actual conditions may vary from those indicated. Note that groundwater elevations, directions, and rates may change due to seasonal or other variations in temperature, precipitation, runoff, or other factors.
3. Approximate groundwater flow rates were calculated using an assumed saturated hydraulic conductivity of 100 to 500 feet per day, and an assumed porosity of 39%. Assumptions are consistent with values typical of medium-grained, clean sand. The calculated groundwater flow rate is equivalent to the average interstitial velocity or the seepage velocity.

Figures

Drawn By: D. Dombrowsky
Designed By: H. Roakes
Reviewed By: J. Scott
Project No: 2025.017
Date: May 2025

1000 0 2000 Feet

SANBORN HEAD

Figure 1
Locus Plan

Merrimack Station
Coal Ash Landfill
Bow, New Hampshire

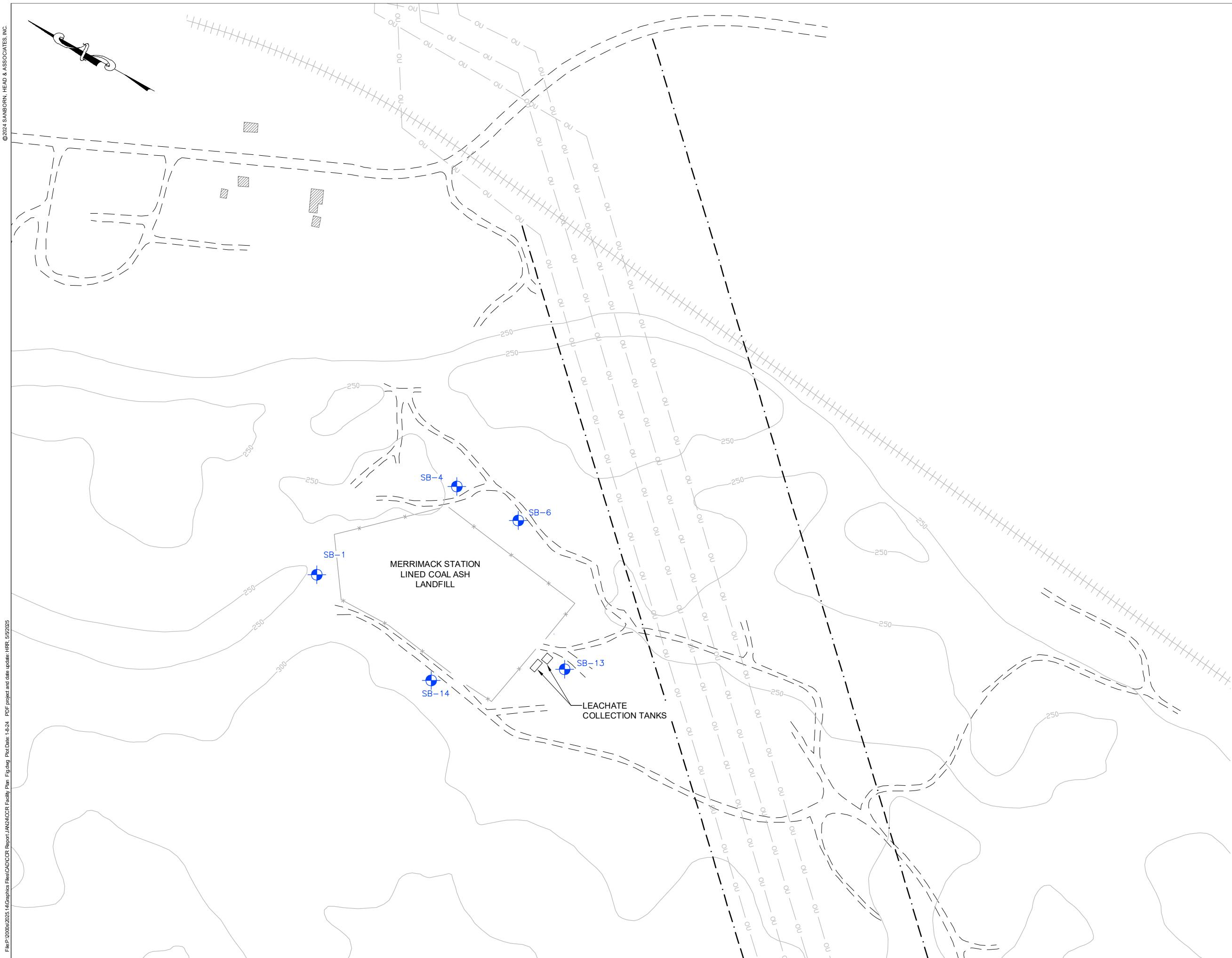
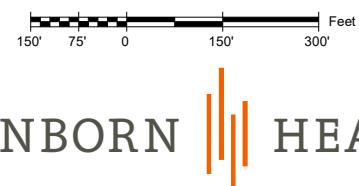


Figure 2

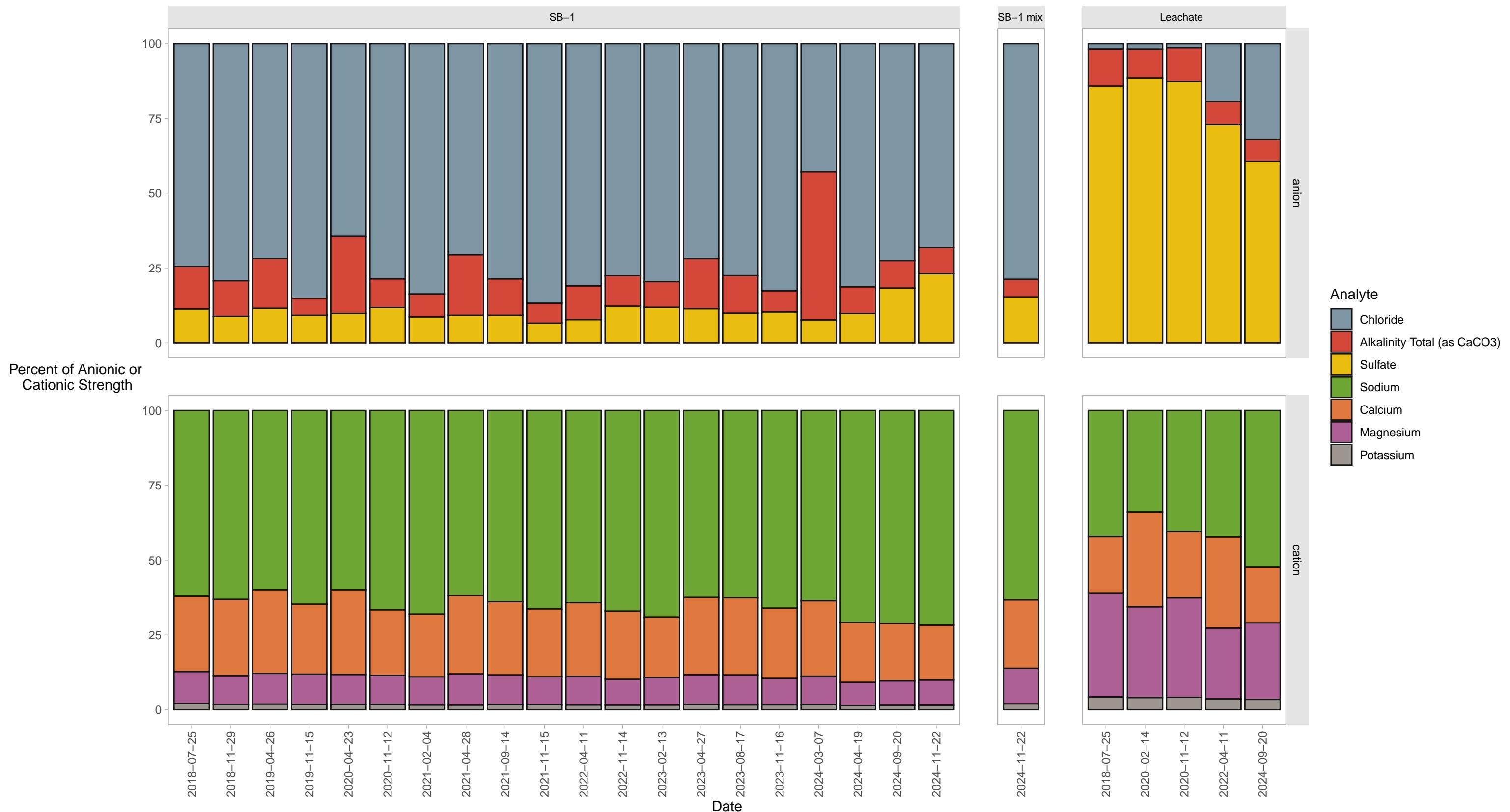
Facility Plan

Merrimack Station Coal Ash Landfill Bow, New Hampshire

Drawn By: D. Dombrowsky
Designed By: H. Roakes
Reviewed By: J. Scott
Project No: 2025.017
Date: May 2025


Notes

1. The base map was developed from a drawing prepared by Public Service Company of New Hampshire's Engineering Division entitled, "Area Plan, Merrimack Station, Bow, N.H." The drawing was dated 5/1/90 and was last revised on 6/28/95.
2. The location of the landfill and the site features shown should be considered approximate.


Legend

 SB-4 Monitoring Well
 Right-Of-Way
 Fence
 Overhead Utilities
 Elevation Contour

SANBORN ||| HEAD

Figure 3 – SB-1 Major Ion Signature
Samples With Project-Specific Major Ion List Analyzed

Attachment A

Qualified Professional Engineer Certification

ATTACHMENT A

QUALIFIED PROFESSIONAL ENGINEER CERTIFICATION

I certify that the information in this alternative source demonstration (ASD) report, dated May 6, 2025 (the "Report"), is accurate, subject to the assumptions and limitations contained within the Report. The ASD report was prepared by Sanborn, Head & Associates, Inc. for the Merrimack Station Coal Ash Landfill site located in Bow, New Hampshire.

Harrison R. Roakes

Printed Name of Licensed Professional Engineer

Signature

15920

License Number

New Hampshire

Licensing State

5/6/2025

Date

Attachment B

Limitations

ATTACHMENT B

LIMITATIONS

1. The conclusions and recommendations described in this Report are based in part on the data obtained from a limited number of samples from widely-spaced locations. The sample results indicate conditions only at the specific location and time. They do not necessarily reflect variations that may exist between or within such locations, and the nature and extent of variations between or within these locations may not become evident until further investigation or remediation is initiated. The validity of the conclusions is based in part on assumptions Sanborn Head has made about conditions at the site. If conditions different from those described become evident, then it will be necessary to re-evaluate the conclusions of this Report.
2. Water level measurements were made at monitoring locations at times and under conditions stated within the Report. Fluctuations in water levels may occur due to seasonal or other variations in precipitation, temperature, runoff, pumping, flooding, and other factors.
3. Quantitative laboratory analyses were performed as noted within the Report. Additional analytes not searched for during the current study may be present at the site. Sanborn Head relied upon the data provided by the analytical laboratory and did not perform an independent evaluation of the reliability of these data. Moreover, variations in the types and concentrations of analytes and variations in their distributions may occur due to the passage of time, water table fluctuations, precipitation and recharge events, and other factors.
4. The conclusions and recommendations contained in this Report are based in part upon various types of chemical data as well as historical and hydrogeologic information developed during previous studies. While Sanborn Head reviewed those data and information as stated in this Report, any of Sanborn Head's interpretations, conclusions, and recommendations that have relied on that information will be contingent on its validity. Should additional chemical data, historical information, hydrogeologic information, or other relevant information become available in the future, such information should be reviewed by Sanborn Head and the interpretations, conclusions, and recommendations presented herein should be modified accordingly.
5. This Report was prepared for the exclusive use of GSP Merrimack LLC (GSP) for specific application for 40 CFR Part 257.90 compliance for GSP's Merrimack Station Coal Ash landfill in Bow, New Hampshire, and was prepared in accordance with generally-accepted hydrogeologic and engineering practices. No warranty, express or implied, is made.

Appendix C

Laboratory Reports

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Allan Palmer
Granite Shore Power LLC
431 River Road
Bow, New Hampshire 03304

Generated 5/5/2025 11:27:55 AM

JOB DESCRIPTION

Merrimack Station Coal Ash LF

JOB NUMBER

475-3410-1

Eurofins Concord

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated
5/5/2025 11:27:55 AM

Authorized for release by
Jeffrey Gagne, Project Manager
Jeffrey.Gagne@et.eurofinsus.com
(603)410-3880

Case Narrative

Client: Granite Shore Power LLC
Project: Merrimack Station Coal Ash LF

Job ID: 475-3410-1

Job ID: 475-3410-1

Eurofins Concord

Job Narrative 475-3410-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/25/2025 3:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Field Service / Mobile Lab

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Sample Summary

Client: Granite Shore Power LLC
Project/Site: Merrimack Station Coal Ash LF

Job ID: 475-3410-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
475-3410-1	SB-1	Water	04/25/25 14:11	04/25/25 15:00
475-3410-2	SB-4	Water	04/25/25 11:50	04/25/25 15:00
475-3410-3	SB-6	Water	04/25/25 13:30	04/25/25 15:00
475-3410-4	SB-13	Water	04/25/25 10:15	04/25/25 15:00
475-3410-5	SB-14	Water	04/25/25 12:50	04/25/25 15:00

Client Sample Results

Client: Granite Shore Power LLC
Project/Site: Merrimack Station Coal Ash LF

Job ID: 475-3410-1

Client Sample ID: SB-1

Date Collected: 04/25/25 14:11
Date Received: 04/25/25 15:00

Lab Sample ID: 475-3410-1

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		04/29/25 09:10	1	SRG
Sulfate	23		1.0	mg/L		04/29/25 09:10	1	SRG

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	0.082		0.050	mg/L		04/30/25 15:02	1	DS
Potassium	1.7		0.050	mg/L		04/30/25 15:02	1	DS
Sodium	52		0.50	mg/L		04/30/25 15:02	1	DS
Magnesium	3.3		0.050	mg/L		04/30/25 15:02	1	DS
Calcium	13		0.50	mg/L		04/30/25 15:02	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	9.6		1.0	mg/L		05/01/25 13:13	1	EAF
Total Dissolved Solids (SM 2540C)	170		1.0	mg/L		04/26/25 11:17	1	SRG
Chloride (SM 4500 Cl-E)	83		1.0	mg/L		04/29/25 11:52	1	SRG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.90			SU		04/25/25 14:11	1	TNC

Client Sample ID: SB-4

Date Collected: 04/25/25 11:50
Date Received: 04/25/25 15:00

Lab Sample ID: 475-3410-2

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		04/29/25 09:25	1	SRG
Sulfate	12		1.0	mg/L		04/29/25 09:25	1	SRG

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	<0.050		0.050	mg/L		04/30/25 15:06	1	DS
Potassium	1.5		0.050	mg/L		04/30/25 15:06	1	DS
Sodium	69		0.50	mg/L		04/30/25 15:06	1	DS
Magnesium	1.4		0.050	mg/L		04/30/25 15:06	1	DS
Calcium	6.0		0.50	mg/L		04/30/25 15:06	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	17		1.0	mg/L		05/01/25 13:16	1	EAF
Total Dissolved Solids (SM 2540C)	180		1.0	mg/L		04/26/25 11:17	1	SRG
Chloride (SM 4500 Cl-E)	93		5.0	mg/L		04/29/25 11:53	5	SRG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.49			SU		04/25/25 11:50	1	TNC

Eurofins Concord

Client Sample Results

Client: Granite Shore Power LLC
 Project/Site: Merrimack Station Coal Ash LF

Job ID: 475-3410-1

Client Sample ID: SB-6

Date Collected: 04/25/25 13:30
 Date Received: 04/25/25 15:00

Lab Sample ID: 475-3410-3

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		04/29/25 09:39	1	SRG
Sulfate	16		1.0	mg/L		04/29/25 09:39	1	SRG

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	0.063		0.050	mg/L		04/30/25 15:11	1	DS
Potassium	1.1		0.050	mg/L		04/30/25 15:11	1	DS
Sodium	43		0.50	mg/L		04/30/25 15:11	1	DS
Magnesium	1.6		0.050	mg/L		04/30/25 15:11	1	DS
Calcium	6.3		0.50	mg/L		04/30/25 15:11	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	26		1.0	mg/L		05/01/25 13:19	1	EAF
Total Dissolved Solids (SM 2540C)	140		1.0	mg/L		04/26/25 11:17	1	SRG
Chloride (SM 4500 Cl- E)	51		1.0	mg/L		04/29/25 11:55	1	SRG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.76			SU		04/25/25 13:30	1	TNC

Client Sample ID: SB-13

Date Collected: 04/25/25 10:15
 Date Received: 04/25/25 15:00

Lab Sample ID: 475-3410-4

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		04/29/25 09:54	1	SRG
Sulfate	5.1		1.0	mg/L		04/29/25 09:54	1	SRG

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	<0.050		0.050	mg/L		04/30/25 15:15	1	DS
Potassium	2.3		0.050	mg/L		04/30/25 15:15	1	DS
Sodium	130		0.50	mg/L		04/30/25 15:15	1	DS
Magnesium	4.1		0.050	mg/L		04/30/25 15:15	1	DS
Calcium	19		0.50	mg/L		04/30/25 15:15	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	7.6		1.0	mg/L		05/01/25 13:21	1	EAF
Total Dissolved Solids (SM 2540C)	390		1.0	mg/L		04/26/25 11:17	1	SRG
Chloride (SM 4500 Cl- E)	220		10	mg/L		04/29/25 11:56	10	SRG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.18			SU		04/25/25 10:15	1	TNC

Eurofins Concord

Client Sample Results

Client: Granite Shore Power LLC
 Project/Site: Merrimack Station Coal Ash LF

Job ID: 475-3410-1

Client Sample ID: SB-14

Lab Sample ID: 475-3410-5

Matrix: Water

Date Collected: 04/25/25 12:50

Date Received: 04/25/25 15:00

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		04/29/25 10:08	1	SRG
Sulfate	10		1.0	mg/L		04/29/25 10:08	1	SRG

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	<0.050		0.050	mg/L		04/30/25 15:20	1	DS
Potassium	0.72		0.050	mg/L		04/30/25 15:20	1	DS
Sodium	9.3		0.50	mg/L		04/30/25 15:20	1	DS
Magnesium	1.3		0.050	mg/L		04/30/25 15:20	1	DS
Calcium	4.6		0.50	mg/L		04/30/25 15:20	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	11		1.0	mg/L		05/01/25 13:24	1	EAF
Total Dissolved Solids (SM 2540C)	33		1.0	mg/L		04/26/25 11:17	1	SRG
Chloride (SM 4500 Cl- E)	8.4		1.0	mg/L		04/29/25 11:57	1	SRG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	6.11			SU		04/25/25 12:50	1	TNC

Eurofins Concord

Accreditation/Certification and Definitions Summary

Client: Granite Shore Power LLC
Project/Site: Merrimack Station Coal Ash LF

Job ID: 475-3410-1

Laboratory: Eurofins Concord

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
New Hampshire	NELAP	1012	01-20-26
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte
Field Sampling		Water	Field pH

Glossary

Abbreviation **These commonly used abbreviations may or may not be present in this report.**

☒	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
MRL	Method Reporting Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
SDL	Sample Detection Limit
SDL	Sample Detection Limit
SDL	Sample Detection Limit
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

CHAIN-OF-CUSTODY RECORD

Environment Testing
Eastern Analytical

475-3410-COC

5/5/2025

aSampleID Date/Time aMatrix Parameters

Sample Notes # of containers

SB-1

4/25/25

14:11

GW

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

SB-4

11:50

GW

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

preservative: HCl, HNO₃, H₂SO₄, NaOH

MEOH Na₂S₂O₃ H₃PO₄ Trizma

ICP

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

SB-6

13:30

GW

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

SB-13

10:15

GW

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

preservative: HCl, HNO₃, H₂SO₄, NaOH

MEOH Na₂S₂O₃ H₃PO₄ Trizma

ICP

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

SB-14

12:50

GW

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

preservative: HCl, HNO₃, H₂SO₄, NaOH, MEOH, Na₂S₂O₃, H₃PO₄, Trizma

MEOH Na₂S₂O₃ H₃PO₄ Trizma

ICP

Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity

4

aClientID Merrimack Station - Coal Ash
nProjectID 3949 nYearMonth 2025.04
Customer Allan Palmer
Address 431 River Road
City Bow
Phone 603-230-7997

Results Needed by: Preferred date _____
Notes about project _____

ReportingOptions
 HC NO FAX EDD Disk
 Fax No partial FAX EDD email
 Quote# 1022393

Samples Collected by: TG, MG Temperature 58°C
 Relinquished by TG Date/Time 4/25/25 1500 Received by _____

Relinquished by _____ Date/Time _____ Received by _____

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Allan Palmer
Granite Shore Power LLC
431 River Road
Bow, New Hampshire 03304

Generated 12/1/2025 5:06:44 PM

JOB DESCRIPTION

Merrimack Station - Coal Ash LF GW

JOB NUMBER

475-16005-1

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Northeast, LLC Project Manager.

Authorization

Generated
12/1/2025 5:06:44 PM

Authorized for release by
Joelle Del Signore, Project Management Assistant I
Joelle.DelSignore@et.eurofinsus.com
(603)228-0525

Case Narrative

Client: Granite Shore Power LLC
Project: Merrimack Station - Coal Ash LF GW

Job ID: 475-16005-1

Job ID: 475-16005-1

Eurofins Concord

Job Narrative 475-16005-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 11/14/2025 4:25 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.7°C.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Metals

Method 200.8: The opening continuing calibration verification (CCV) was within limits at 107%, however, the closing continuing calibration verification (CCV) associated with batch 475-20912 recovered above the upper control limit for Magnesium. Non-detections of the affected analytes are reported. Any detections are considered estimated.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Field Service / Mobile Lab

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Sample Summary

Client: Granite Shore Power LLC

Project/Site: Merrimack Station - Coal Ash LF GW

Job ID: 475-16005-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Sample Origin
475-16005-1	SB-1	Water	11/14/25 15:26	11/14/25 16:25	New Hampshire
475-16005-2	SB-4	Water	11/14/25 09:37	11/14/25 16:25	New Hampshire
475-16005-3	SB-6	Water	11/14/25 10:59	11/14/25 16:25	New Hampshire
475-16005-4	SB-13	Water	11/14/25 12:25	11/14/25 16:25	New Hampshire
475-16005-5	SB-14	Water	11/14/25 13:59	11/14/25 16:25	New Hampshire

1

2

3

4

5

6

7

Eurofins Concord

Client Sample Results

Client: Granite Shore Power LLC

Job ID: 475-16005-1

Project/Site: Merrimack Station - Coal Ash LF GW

Client Sample ID: SB-1

Lab Sample ID: 475-16005-1

Date Collected: 11/14/25 15:26

Matrix: Water

Date Received: 11/14/25 16:25

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		11/18/25 10:07	1	ALS
Sulfate	17		1.0	mg/L		11/18/25 10:07	1	ALS
Chloride	98		1.0	mg/L		11/18/25 10:07	1	ALS

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	<0.050		0.050	mg/L		11/20/25 04:22	1	DS
Potassium	1.8		0.050	mg/L		11/20/25 04:22	1	DS
Sodium	58		0.50	mg/L		11/21/25 04:36	1	DS
Magnesium	3.4 ^+		0.050	mg/L		11/21/25 04:36	1	DS
Calcium	12		0.50	mg/L		11/20/25 04:22	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	9.3		1.0	mg/L		11/20/25 09:37	1	BSP
Total Dissolved Solids (SM 2540C)	220		10	mg/L		11/17/25 15:03	1	EWG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.50			SU		11/14/25 15:26	1	TNC

Client Sample ID: SB-4

Lab Sample ID: 475-16005-2

Date Collected: 11/14/25 09:37

Matrix: Water

Date Received: 11/14/25 16:25

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		11/18/25 10:22	1	ALS
Sulfate	15		1.0	mg/L		11/18/25 10:22	1	ALS
Chloride	69		1.0	mg/L		11/18/25 10:22	1	ALS

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	0.059		0.050	mg/L		11/20/25 04:27	1	DS
Potassium	1.5		0.050	mg/L		11/20/25 04:27	1	DS
Sodium	58		0.50	mg/L		11/21/25 04:41	1	DS
Magnesium	1.3 ^+		0.050	mg/L		11/21/25 04:41	1	DS
Calcium	5.0		0.50	mg/L		11/20/25 04:27	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	24		1.0	mg/L		11/20/25 09:39	1	BSP
Total Dissolved Solids (SM 2540C)	150		10	mg/L		11/17/25 15:03	1	EWG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.92			SU		11/14/25 09:37	1	TNC

Eurofins Concord

Client Sample Results

Client: Granite Shore Power LLC

Job ID: 475-16005-1

Project/Site: Merrimack Station - Coal Ash LF GW

Client Sample ID: SB-6

Lab Sample ID: 475-16005-3

Date Collected: 11/14/25 10:59

Matrix: Water

Date Received: 11/14/25 16:25

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		11/18/25 10:36	1	ALS
Sulfate	9.6		1.0	mg/L		11/18/25 10:36	1	ALS
Chloride	170		10	mg/L		11/18/25 17:21	10	ALS

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	<0.050		0.050	mg/L		11/20/25 04:32	1	DS
Potassium	2.2		0.050	mg/L		11/20/25 04:32	1	DS
Sodium	110		0.50	mg/L		11/21/25 04:45	1	DS
Magnesium	3.6 ^+		0.050	mg/L		11/21/25 04:45	1	DS
Calcium	14		0.50	mg/L		11/20/25 04:32	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	11		1.0	mg/L		11/20/25 09:42	1	BSP
Total Dissolved Solids (SM 2540C)	340		10	mg/L		11/17/25 15:03	1	EWG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.94			SU		11/14/25 10:59	1	TNC

Client Sample ID: SB-13

Lab Sample ID: 475-16005-4

Date Collected: 11/14/25 12:25

Matrix: Water

Date Received: 11/14/25 16:25

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	<0.10		0.10	mg/L		11/18/25 10:51	1	ALS
Sulfate	7.0		1.0	mg/L		11/18/25 10:51	1	ALS
Chloride	180		10	mg/L		11/18/25 17:35	10	ALS

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	<0.050		0.050	mg/L		11/20/25 04:36	1	DS
Potassium	2.1		0.050	mg/L		11/20/25 04:36	1	DS
Sodium	120		0.50	mg/L		11/21/25 04:50	1	DS
Magnesium	2.8 ^+		0.050	mg/L		11/21/25 04:50	1	DS
Calcium	11		0.50	mg/L		11/20/25 04:36	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	8.2		1.0	mg/L		11/20/25 09:53	1	BSP
Total Dissolved Solids (SM 2540C)	350		10	mg/L		11/17/25 15:03	1	EWG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.55			SU		11/14/25 12:25	1	TNC

Eurofins Concord

Client Sample Results

Client: Granite Shore Power LLC

Job ID: 475-16005-1

Project/Site: Merrimack Station - Coal Ash LF GW

Client Sample ID: SB-14

Lab Sample ID: 475-16005-5

Date Collected: 11/14/25 13:59

Matrix: Water

Date Received: 11/14/25 16:25

Method: 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Fluoride	0.11		0.10	mg/L		11/18/25 11:05	1	ALS
Sulfate	17		1.0	mg/L		11/18/25 11:05	1	ALS
Chloride	8.5		1.0	mg/L		11/18/25 11:05	1	ALS

Method: 200.8 - Metals (ICP/MS)

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Boron	<0.050		0.050	mg/L		11/20/25 04:50	1	DS
Potassium	0.65		0.050	mg/L		11/20/25 04:50	1	DS
Sodium	15		0.50	mg/L		11/21/25 04:55	1	DS
Magnesium	1.0 ^+		0.050	mg/L		11/21/25 04:55	1	DS
Calcium	3.5		0.50	mg/L		11/20/25 04:50	1	DS

General Chemistry

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Alkalinity (SM 2320B)	11		1.0	mg/L		11/20/25 09:55	1	BSP
Total Dissolved Solids (SM 2540C)	49		10	mg/L		11/17/25 15:03	1	EWG

Method: Field Sampling - Field Sampling

Analyte	Result	Qualifier	RL	Unit	D	Analyzed	Dil Fac	Analyst
Field pH	5.97			SU		11/14/25 13:59	1	TNC

Accreditation/Certification and Definitions Summary

Client: Granite Shore Power LLC

Job ID: 475-16005-1

Project/Site: Merrimack Station - Coal Ash LF GW

Laboratory: Eurofins Concord

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
New Hampshire	NELAP	1012	01-20-26

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
Field Sampling		Water	Field pH

Qualifiers

Metals

Qualifier	Qualifier Description
^+	Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
1C	Result is from the primary column on a dual-column method.
2C	Result is from the confirmation column on a dual-column method.
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
MRL	Method Reporting Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
SDL	Sample Detection Limit

Accreditation/Certification and Definitions Summary

Client: Granite Shore Power LLC

Project/Site: Merrimack Station - Coal Ash LF GW

Job ID: 475-16005-1

Glossary (Continued)

Abbreviation **These commonly used abbreviations may or may not be present in this report.**

SDL Sample Detection Limit

SDL Sample Detection Limit

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

1

2

3

4

5

6

7

Method Summary

Client: Granite Shore Power LLC

Project/Site: Merrimack Station - Coal Ash LF GW

Job ID: 475-16005-1

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET ENC
200.8	Metals (ICP/MS)	EPA	EET ENC
SM 2320B	Alkalinity	SM	EET ENC
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET ENC
Field Sampling	Field Sampling	EPA	EET ENC
200.8	Preparation, Total Metals	EPA	EET ENC

Protocol References:

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET ENC = Eurofins Concord, 51 Antrim Avenue, Concord, NH 03301, TEL (603)228-0525

CHAIN-OF-CUSTODY RECORD

475-16005 COC

aSampleID	Date/Time	aMatrix	Parameters	Sample Notes	# of containers
SB-1	11/14/25 15:26	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
SB-4	11/14/25 09:37	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
SB-6	11/14/25 10:59	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
SB-13	11/14/25 12:25	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4
SB-14	11/14/25 13:59	GW	Total Boron, Calcium, Magnesium, Potassium, Sodium, Fluoride, Chloride, Sulfate, Field pH, Total Dissolved Solids, Total Alkalinity		4

Page 11 of 11

aClientID	Merrimack Station - Coal Ash	Results Needed by: Preferred date _____	Reporting Options	PO# _____
nProjectID	3949	Notes about project	<input checked="" type="checkbox"/> HC	<input type="checkbox"/> NO FAX
Client (Pro Mgr)	Allan Palmer		<input type="checkbox"/> Fax	<input checked="" type="checkbox"/> No partial FAX
Customer	Granite Shore Power		<input checked="" type="checkbox"/> EDD Disk	<input type="checkbox"/> EDD email
Address	431 River Road		<input checked="" type="checkbox"/> EDD email	
City	Bow	Date/Time	Quote# _____	Temperature <u>1.7</u> °C
Phone	603-230-7997	Relinquished by	Relinquished by	Received by
Fax				